

Research Article

Method Development and Validation for Triprolidine and Phenylepherine in Bulk and Its Pharmaceutical Dosage Forms by Using RP-HPLC as per ICH Guidelines

Angara Ganesh¹*, Gope Edward Raju², Vaddi Lakshmi Priya³, Doonaboyina Raghava⁴, Kavala Nageswara rao⁵

Department of Pharmaceutical Analysis, K.G.R.L College of Pharmacy, Bhimavaram-534201, Andhra Pradesh, India

Abstract

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Triprolidine and Phenylephrine was done by RP-HPLC. The Phosphate buffer was $p^H4.5$ and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of $P^H4.5(20:80 \text{ v/v})$. Kromosil C_{18} column (250mm x 4.6mm) 5µg or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 254 nm. The solutions were chromatographed at a constant flow rate of 1ml min⁻¹. The linearity range of Triprolidine and Phenylephrine were found to be from 100-500 µg/ml of Triprolidine and 1-5µg/ml of Phenylephrine. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. Triprolidine % RSD 0.2 and Phenylephrine % RSD 0.6.Intermediate precision for Triprolidine %RSD 0.2 and Phenylephrine% RSD 0.1The percentage recovery varies from 98-102% of Triprolidine and Phenylephrine. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

Keywords: Kromosil $\mathsf{C}_{_{18,}}$ Triprolidine and Phenylephrine, RP-HPLC

Article Info

Corresponding Author: Angara Ganesh Department of Pharmaceutical Analysis, K.G.R.L College of Pharmacy, Phinemene 524201 And Inn Dandach India	
Bhimavaram-534201, Andhra Pradesh, India	10URNAL QR-CODE

Article History: Received 09 July 2023, Accepted 20 Aug 2023, Available Online 21 Sept 2023

Copyright©2023 Journal of Pharmaceutical and Biomedical Analysis Letters. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Citation: Angara Ganesh, et al. Method Development and Validation for Triprolidine and Phenylepherine in Bulk and Its Pharmaceutical Dosage Forms by Using RP-HPLC as per ICH Guidelines. J. Pharm, Biomed. A. Lett., 2023, 11(1): 31-36.

Contents

1. Introduction	. 31
2. Methodology	32
3. Results and Discussion.	. 32
4. Conclusion	.35
5. References	35

1. Introduction

Triprolidine is a sedating antihistamine combined with pseudoephedrine and guaifenesin in various types of cold Journal of Pharmaceutical and Biomedical Analysis Letters and allergy medications to relieve allergy symptoms, hay fever and common cold symptoms, and to aid in sleep.

Phenylephrine is an alpha-1 adrenergic agonist used in the management of hypotension, generally in the surgical setting associated with the use of anaesthetics.

2. Materials and Methds Instrumentation

The instrument used was HPLC waters 2690 separation module with photo diode array detector, Software-empower. The stationary phase used was Inertsil (250×4.6mm, 5 μ) ODS C-18 RP-column Digital weighing balance-Model number BSA224SCW (Ascoset), Sonicator (Enertech)-SE60US, pH meter Model number AD102U

Materials and reagents

Roflumilast and Montelukast were gift samples provided by Hetero Laboratories, Hyderabad, Ortho phosphoric acid , Potassium dihydrogen, Tri ethyl amine, Methanol and Water for HPLC were supplied by Merck India Ltd, Mumbai

3. Results and Discussion

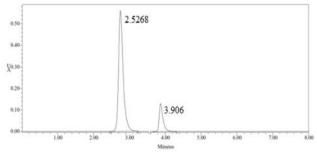


Figure 1: chromatogram for system suitability

Method development

Six trials were made by changing the mobile phase ratios and solvents Buffer: Methanol P^{H} 2.5 (30:70 v/v) Buffer: Methanol P^{H} 2.5 (30:70 v/v) Buffer: Methanol P^{H} 2.5 (60:40 v/v) Phosphate buffer: Methanol P^{H} 2.5 (20:80 v/v) Phosphate buffer: Methanol P^{H} 2.5 (55:45 v/v) Phosphate buffer: Methanol P^{H} 2.5 (25:75 v/v). Finally, the mobile phase was optimized to Methanol: Phosphate buffer P^{H} 2.5 (25:75 v/v).

Chromatographic conditions: From literature review and solubility analysis initial chromatographic conditions Mobile phase ortho phosphoric acid buffer: Methanol 25:75 were set (Buffer P^H 2.45 adjusted with Triethylamine), Inertsil C 18 (250×4.6mm, 5µ) Column, Flow rate 1.0 ml/min and temperature was ambient, eluent was scanned with PDA detector in system and it showed maximum absorbance at 254 nm.

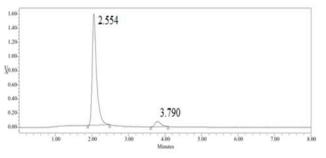


Figure 2: chromatogram for standard injection

	Table 1 Results of system suitability parameters for tripfoliume and riteryiepinme						
S.No	Name	Retention	Area (μV	Height	USP	USP	USP plate
		time(min)	sec)	(μV)	resolution	tailing	count
1	Triprolidine	2.669	124505	223532	1.2	1.2	4523.3
2	Triprolidine	2.5264	123442	134544	1.2	1.2	5020.2
3	Triprolidine	2.5265	123431	124386	1.2	1.2	4061.2
4	Triprolidine	2.5266	125432	134568	1.2	1.2	5032.4
5	Triprolidine	2.5267	122434	146852	1.2	1.2	5076.4
6	Triprolidine	2.5268	124438	145782	1.2	1.2	6024.8
7	Phenylephrine	3.855	1308495	154566	1.3	1.3	6090.3
8	Phenylephrine	3.902	1309496	156428	1.3	1.3	5023.2
9	Phenylephrine	3.903	1306498	152634	1.3	1.3	8060.7
10	Phenylephrine	3.904	1342499	158426	1.3	1.3	7080.1
11	Phenylephrine	3.905	1343451	158484	1.3	1.3	6054.4
12	Phenylephrine	3.906	1346455	158423	1.3	1.3	7080.6

Table 1 Results of system suitability parameters for Triprolidine and Phenylephrine

Table 2 Showing %RSD results method precession for Triprolidine

Injection	Peak Name	Rt	Area	Height
1	Triprolidine	3.699	1302729	341432.2
2	Triprolidine	3.790	1302947	523341.4
3	Triprolidine	3.663	1303236	374642.4
4	Triprolidine	3.658	1303977	327514.3
5	Triprolidine	3.647	1309759	374028.1
6.	Triprolidine	3.645	1309789	346280.2
mean			1304529.8	

Angara Ganesh et al, J. Pharm, Biomed. A. Lett., 2023, 11(1): 31-36

Std.dev	2961.1	
%RSD	0.2	

Injection	Peak Name	Rt	Area	Height
1	Phenylephrine	3.616	123149	248742.3
2	Phenylephrine	3.634	123766	281441.2
3	Phenylephrine	3.460	124271	271721.2
4	Phenylephrine	3.446	124691	284393.8
5	Phenylephrine	3.437	124956	256318.0
6	Phenylephrine	3.438	125845	226813.0
mean			124162.7	
Std.dev			725.6	
%RSD			0.6	

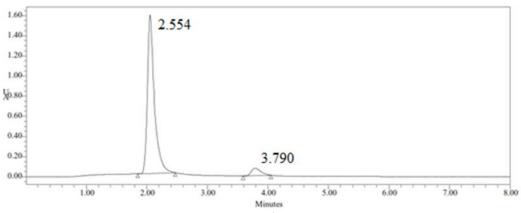


Figure 3 Chromatogram for standard injection

		Table 4 Showing results for intermediate precision of miprohame					
Injec	tion Peak na	me	Rt Ar	ea Height			
1	. Triprolidine	2.554	1300148	438467.1			
2	Triprolidine	2.557	1304520	436873.3			
Э	Triprolidine	2.563	1305937	438572.1			
Z	Triprolidine	2.562	1306476	435587.5			
5	Triprolidine	2.561	130871	432826.4			
6	5 Triprolidine	2.561	130872	432838.3			
me	an		1305070.	2			
Std.	dev		3061.8				
%R	SD		0.2				

Table 4 Showing results for intermediate precision of Triprolidine

Table 5 Showing results for intermediate precision of Phenylephrine

INJECTION	Peak name	Rt	Area	Height
1	Phenylephrine	3.790	122487	241421.6
2	Phenylephrine	3.657	122626	233417.3
3	Phenylephrine	3.663	122632	281751.1
4	Phenylephrine	3.646	122702	241843.6
5	Phenylephrine	3.662	122962	281564.1
6	Phenylephrine	3.663	122972	284917.2
mean			122681.8	
Std.dev			174.8	
%RSD			0.1	

Angara Ganesh et al, J. Pharm, Biomed. A. Lett., 2023, 11(1): 31-36

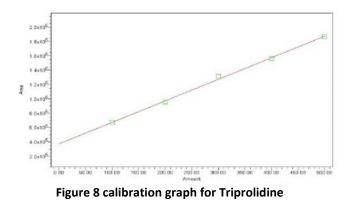

Table 6 Details of Accuracy 50%					
INJECTION	Peak Name	RT	Area	Height	
1	Triprolidine	2.572	132457	86026	
2	Triprolidine	2.573	132458	85549	
3	Triprolidine	2.576	134242	84196	
4	Phenylephrine	3.881	122487	21744	
5	Phenylephrine	3.882	122489	21909	
6	Phenylephrine	3.792	122392	21382	
Mean			371513.5		
Std.Dev			253899.3		
% RSD			0.532		

Table 9 accuracy (recovery) data for Triprolidine

%Concentration (at specification Level)	Area	Amount Added (mg)	Amount Found (mg)	% Recovery	Mean Recovery
50%	65800	5.3	5.34	100.8%	100.51%
100%	124353	10	10.10	100.01%	
150%	177940	14.2	14.45	99.68%	

Table 10 accuracy (recovery) data for Phenylephrine

S.No.	Linearity Level	Concentration	Area
1	I	100ppm	668934
2	II	200ppm	956781
3	III	300ppm	1313873
4	IV	400ppm	1563458
5	V	500ppm	1867084
Correlat	ion Coefficient		0.999

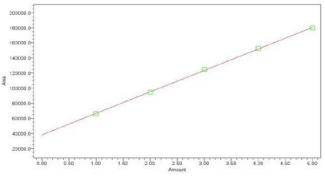


Figure 9 calibration graph for Phenylephrine

Table 13 Analytical performance parameters of Triprolidine and Phenylephrine

Parameters	Triprolidine	Phenylephrine
Slope (m)	66574	12529
Intercept (c)	53592	50245
Correlation coefficient (R ²)	0.999	0.999

Table 14 Results of LOD				
Drug name	Baseline noise(µV)	Signal obtained (µV)	S/N ratio	
Triprolidine	52	152	2.9	
Phenylephrine	52	156	3	

Journal of Pharmaceutical and Biomedical Analysis Letters

Angara Ganesh et al, J. Pharm, Biomed. A. Lett., 2023, 11(1): 31-36

Table 15 Results of LOQ				
Drug name	Baseline noise(µV)	Signal obtained (µV)	S/N ratio	
Triprolidine	52	522	10.03	
Phenylephrine	52	524	10.1	

Table 16 Flow Rate (ml/min) data for Triprolidine				
System Suitability Results				
	S.No	Flow Rate (ml/min)	USP Plate Count	USP Tailing
	1	0.6	5339.9	1.4
	2	0.8	4673.4	1.3
	3	1.0	5216.0	1.4

Table 17 flow rate (ml/min) data for Phenylephrine				
		System Suitability Results		
S.No	Flow Rate (ml/min)	USP Plate Count	USP Tailing	
1	0.8	7063.3	1.3	
2	1.0	6090.3	1.2	
3	1.2	6998.0	1.3	

........

4. Conclusion

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Triprolidine and Phenylephrine was done by RP-HPLC. The Phosphate buffer was pH4.5 and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of P^{H} 4.5(20:80 v/v). KromosilC₁₈ Column (250mm x 4.6mm) 5µg or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 254 nm. The solutions were chromatographed at a constant flow rate of 1ml min⁻¹. The linearity range of Triprolidine and Phenylephrine were found to be from 100-500 µg/ml of Triprolidine and 1-5µg/ml of Phenylephrine. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. Triprolidine %RSD 0.2 and Phenylephrine % RSD0.6. Intermediate precision for Triprolidine %RSD 0.2 and Phenylephrine %RSD0. 1. The percentage recovery varies from 98-102% of Triprolidine and Phenylephrine. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

5. References

- [1] A.BraithWait and F.J.Smith, Chromatographic Met hods, 5thedition, Kluwer Academic Publisher, (1996), PP 1-2.
- [2] Andrea Weston and Phyllisr.Brown, HPLC Principle and Practice, 1st edition, Academic press, (1997), PP 24-37.

[3]

- [4] Dr. Kealey and P.J Haines, Analytical Chemistry, 1stedition, Bios Publisher, (2002), PP 1-7.
- [5] Yuri Kazakevich and Rosario Lobrutto, HPLC for Pharmaceuticalscientists,1stedition, Wiley Intersc ience A John Wiley & Sons, Inc., Publication, 2007, PP 15-23.
- [6] Chromatography, URL: http://en.wikipedia.org/wik i/Chromatography.
- [7] Meyer V.R. Practical High-Performance Liquid Chromatography, 4th Ed. England, John Wiley & Sons Ltd, (2004), PP 7-8.
- [8] Sahajwalla CG a new drug development, vol 141, Marcel Dekker Inc., New York, (2004), PP 421-426.
- [9] Introduction to Column. (Online), URL: http://amit patel745.topcities.com/index files/study/column care.pdf
- [10] Detectors used in HPLC, URL: http://wiki.answers.c om/Q/What_detectors_are_used_in_HPLC
- [11] Detectors (online) ,URL:http://hplc.chem.shu.edu /NEW/HPLC Book/Detectors/det uvda.html
- [12] Detectors (online) ,URL:http://www.dionex.com/e nus/webdocs/64842-31644-02 PDA-100.pdf
- [13] Detectors (online), URL: http://www.ncbi.nlm.nih.g ov/pubmed/8867705
- [14] Detectors (online), URL: http://www.chem.agilent. com/Library/applications/59643559.pdf
- [15] Detectors (online), URL: http://hplc.chem.shu.edu/ new/hplcbook/detector
- [16] Draft ICH Guidelines on Validation of Analytical Procedures Definitions and terminology. Federal Register, Vol 60. IFPMA, Switzerland, (1995), PP 1126.
- [17] Murty D, Rajesh E, Raghava D, Raghavan TV, Surulivel MK. Hypolipidemic effect of arborium plus in experimentally induced hypercholestermic rabbits.Yakugaku Zasshi. 2010 Jun;130(6):841-6.

- [18] Dr. K. Nageswara Rao, Raghava Doonaboyina, R. Mahesh Babu, Analytical Method Development and Validation for the Simultaneous Estimation of Ceftolozane and Tazobactam in Its Bulk and Pharmaceutical Dosage Forms. Asian J. Chem Pharm.Res., 2018, 6(2): 43-48.
- [19] Dr. K. Nageswara Rao, Raghava Doonaboyina, R.Hema, Method Development and Validation of Brinzolamide and Brimonidine in Its Bulk and Ophthalmic Dosage Form by Using RP-HPLC. Int. J. Chem, Pharm, Sci., 2018, 6(11): 306-312. 6. Dr. K. Nageswara Rao, Raghava Doonaboyina, S. Rajesh. Analytical Method Development and Validation for the Simultaneous Estimation of Empagliflozin and Linagliptin in Pharmaceutical Dosage Forms by RP-HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(11): 313-318.
- [20] Dr. K. Nageswara Rao, Raghava Doonaboyina, Bhavani Analytical Method Development and Validation For the Simultaneous Estimation of Buprenorphine and Naloxone By RP- HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 279-284. 8. Dr. K. Nageswara Rao, Raghava Doonaboyina, M.Jayasri Simultaneous Estimation of Neutipotent and Palonesetron in Its Bulk and Pharmaceutical Dosage Form by RPHPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 285-290.
- [21] Dr. K. Nageswara Rao, Raghava Doonaboyina, Hope Evangeline Novel RP-HPLC Method Development and Validation of Dasatinib and Lenvatinib in Bulk and Pharmaceutical Dosage Forms. Int. J. Curnt. Tren. Pharm, Res., Res., 2018, 6(2): 43-49.
- [22] Dr. K. Nageswara Rao, Raghava Doonaboyina, T. Naga Sirisha Devi Analytical Method Development and Validation for the Simultaneous Estimation of Darunavir and Cobicistat by RP- HPLC Method. Int. J. Curnt. Tren. Pharm, Res., Res., 2019, 6(2): 50-55.