

Research Article

Analytical Method Development and Validation for the Simultaneous Estimation of Ramucirumab and Paclitaxel by RP-HPLC Technique

Sama Divya Jyothi^{1*}, Gope Edward Raju², Kandregula Uma Maheswari³, Doonaboyina Raghava⁴, Kavala Nageswara Rao⁵

Department of Pharmaceutical Analysis, K.G.R.L College of Pharmacy, Bhimavaram-534201, Andhra Pradesh, India

ABSTRACT

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Ramucirumab and Paclitaxel was done by RP-HPLC. The Phosphate buffer was p^{H} 4.5 and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of P^{H} 4.5(20:80 v/v). Kromosil C₁₈ Column (250mm x 4.6mm) 5µg or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 254 nm. The solutions were chromatographed at a constant flow rate of 1 ml min⁻¹. The linearity range of Ramucirumab and Paclitaxel were found to be from 100-500 µg/ml of Ramucirumab and 1-5µg/ml of Paclitaxel. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. Ramucirumab %RSD 0.2 and Paclitaxel %RSD 0.6 Intermediate precision for Ramucirumab %RSD 0.2 and Paclitaxel %RSD 0.6 Intermediate precision for Ramucirumab %RSD 0.2 and Paclitaxel form 98-102% of Ramucirumab and Paclitaxel. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

Keywords: Kromosil C18, Ramucirumab and Paclitaxel, RP-HPLC

Article Info

*Corresponding Author Sama Divya Jyothi	
Department of Pharmaceutical Analysis,	
K.G.R.L College of Pharmacy,	
Bhimavaram-534201, Andhra Pradesh, India	Journal QR Code

ARTICLE HISTORY: Received 11 July 2023, Accepted 17 Aug 2023, Available Online 28 Sept 2023

©2023 Production and hosting by International Journal of Pharmacy and Natural Medicines. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Citation: Sama Divya Jyothi, et al. A Study on Evalaution of Prescribing Pattern of Drugs used in Nephrology Department in a Tertiary care Hospital. Int. J. Pharm. Natural Med., 2023, 11(1): 52-58.

CONTENTS

1. Introduction.	.53
2. Methodology	53
3. Results and Discussion.	53
4. Conclusion	.57
5. References	57

1. Introduction

Ramucirumab is a human monoclonal antibody (IgG1) against vascular endothelial growth factor receptor 2 (VEGFR2), a type II trans-membrane tyrosine kinase receptor expressed on endothelial cells. By binding to VEGFR2, ramucirumab prevents binding of its ligands (VEGF-A, VEGF-C, and VEGF-D), thereby preventing VEGFstimulated receptor phosphorylation and downstream ligand-induced proliferation, permeability, and migration of human endothelial cells. VEGFR stimulation also mediates downstream signalling required for angiogenesis and is postulated to be heavily involved in cancer progression, making it a highly likely drug target. In contrast to other agents directed against VEGFR-2, ramucirumab binds a specific epitope on the extracellular domain of VEGFR-2, thereby blocking all VEGF ligands from binding to it. Ramucirumab is indicated for us in advanced gastric or gastro-esophageal junction adenocarcinoma as a single agent or in combination with paclitaxel after prior fluoropyrimidine- or platinum-containing chemotherapy. Paclitaxel is a chemotherapeutic agent marketed under the brand name Taxol among others. Used as a treatment for various cancers, paclitaxel is a mitotic inhibitor that was first isolated in 1971 from the bark of the Pacific yew tree which contains endophytic fungi that synthesize paclitaxel. It is available as an intravenous solution for injection and the newer formulation contains albumin-bound paclitaxel marketed under the brand name Abraxane.

2. Methodology

Instrumentation

The instrument used was HPLC Alliance Waters 2695, empower software. The stationary phase used was kromosil C_{18} Column (250mm x 4.6mm) 5µgDigital weighing balance-Model number BSA224SCW (Ascoset), Sonicator (Enertech)-SE60US, Ph meter Model number AD102U.

Materials and reagents

Ramucirumab And Paclitaxel were gift samples provided by Dr. Reddy's laboratory, Hyderabad, Potassium dihydrogen was supplied by Mumbai finer chemical LTD, Acetonitrile was supplied by Moly chem, Methanol and Water for HPLC were supplied by Merck India Ltd, Mumbai,

Method development

Initially the mobile phase tried was methanol: Ammonium acetate buffer and Methanol: phosphate buffer with various combinations of pH as well as varying proportions.

Finally, the mobile phase was optimized to potassium dihydrogen phosphate with buffer (pH 4.5), Methanol in proportion 20: 80 v/v respectively.

Chromatographic conditions

kromosil C₁₈ Column (250mm x 4.6mm)5 μ g or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 254 nm. The solutions were chromatographed at a constant flow rate of 1ml min⁻¹

Study Period: The Present study was conducted for a period of six months.

Study site:

The Present study was conducted in a Nephrology department in a tertiary care hospital.

Sample size: It was 210 Patients.

Inclusion criteria

- Patients with renal abnormalities.
- Patients of either sex, diagnosed with renal abnormalities.
- Patients who are willing to give consent.
- Patients receiving treatment for renal abnormalities.
- Patients with clinical profile of renal abnormalities.

Exclusion criteria

- Patients below 18 years.
- Patients who are not diagnosed with gastro intestinal abnormalities.
- Special population including pregnant women and lactating women.
- Psychiatric abnormalities.
- Patients who were not willing to join in the study.

Institutional ethics committee (IEC) consideration:

The research protocol was submitted to ethical committee and ethical Committee was permitted to perform the research work in the Nephrology department.

Patient data collection and management:

The data collection form contains information regarding age, sex, diagnosis, past medical history, laboratory data, and diagnostic results. The information about risk factors, clinical laboratory reports, treatment, dose and frequency of administration and duration of therapy was collected from the patients treatment chart.

Statistical analysis:

The data was represented as percentages. The P<0.05 was considered to indicate a statistically significant difference.

3. Results and Discussion

	Table 1: Res	sults of system su	uitability parar	neters for R	amucirumab an	d Paclitaxel	
S.No	Name	Retention	Area (μV	Height	USP	USP	USP plate
		time(min)	sec)	(μV)	resolution	tailing	count
1	Ramucirumab	2.669	124505	223532	1.2	1.2	4523.3
2	Ramucirumab	2.5264	123442	134544	1.2	1.2	5020.2
3	Ramucirumab	2.5265	123431	124386	1.2	1.2	4061.2
4	Ramucirumab	2.5266	125432	134568	1.2	1.2	5032.4

	Sama	Diryasyoun e		····	2019 2020,	11(1): 32 30	
5	Ramucirumab	2.5267	122434	146852	1.2	1.2	5076.4
6	Ramucirumab	2.5268	124438	145782	1.2	1.2	6024.8
7	Paclitaxel	3.855	1308495	154566	1.3	1.3	6090.3
8	Paclitaxel	3.902	1309496	156428	1.3	1.3	5023.2
9	Paclitaxel	3.903	1306498	152634	1.3	1.3	8060.7
10	Paclitaxel	3.904	1342499	158426	1.3	1.3	7080.1
11	Paclitaxel	3.905	1343451	158484	1.3	1.3	6054.4
12	Paclitaxel	3.906	1346455	158423	1.3	1.3	7080.6

Sama Divya Jyothi et al, Int. J. Pharm. Natural Med., 2023, 11(1): 52-58

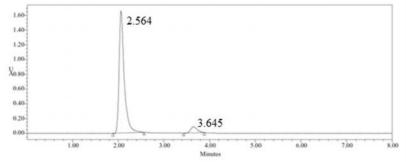


Figure 1: chromatogram for standard injection

Table 2: Showing % RSD results method precision for Ramucirumab					
Injection	Peak Name	Rt	Area	Height	
1	Ramucirumab	3.699	1302729	341432.2	
2	Ramucirumab	3.790	1302947	523341.4	
3	Ramucirumab	3.663	1303236	374642.4	
4	Ramucirumab	3.658	1303977	327514.3	
5	Ramucirumab	3.647	1309759	374028.1	
6.	Ramucirumab	3.645	1309789	346280.2	
Mean			1304529.8		
Std.dev			2961.1		
%RSD			0.2		

able 2: Showing % RSD	results method	precision for	r Ramucirumab
-----------------------	----------------	---------------	---------------

Injection	Peak Name	Rt	Area	Height
1	Paclitaxel	3.616	123149	248742.3
2	Paclitaxel	3.634	123766	281441.2
3	Paclitaxel	3.460	124271	271721.2
4	Paclitaxel	3.446	124691	284393.8
5	Paclitaxel	3.437	124956	256318.0
6	Paclitaxel	3.438	125845	226813.0
Mean			124162.7	
Std.dev			725.6	
%RSD			0.6	

Table 4: Showing results for intermediate precision of Ramucirumab

Injection	Peak name	Rt	Area	Height
1	Ramucirumab	2.554	1300148	438467.1
2	Ramucirumab	2.557	1304520	436873.3
3	Ramucirumab	2.563	1305937	438572.1
4	Ramucirumab	2.562	1306476	435587.5
5	Ramucirumab	2.561	130871	432826.4
6	Ramucirumab	2.561	130872	432838.3
mean			1305070.2	
Std.dev			3061.8	
%RSD			0.2	

Sama Divya Jyothi et al, Int. J. Pharm. Natural Med., 2023, 11(1): 52-58

Injection	Peak name	Rt	Area	Height
1	Paclitaxel	3.790	122487	241421.6
2	Paclitaxel	3.657	122626	233417.3
3	Paclitaxel	3.663	122632	281751.1
4	Paclitaxel	3.646	122702	241843.6
5	Paclitaxel	3.662	122962	281564.1
6	Paclitaxel	3.663	122972	284917.2
mean			122681.8	
Std.dev			174.8	
%RSD			0.1	

Table 6: Details of Accuracy 50%

Injection	Peak Name	RT	Area	Height
1	Ramucirumab	2.572	132457	86026
2	Ramucirumab	2.573	132458	85549
3	Ramucirumab	2.576	134242	84196
4	Paclitaxel	3.881	122487	21744
5	Paclitaxel	3.882	122489	21909
6	Paclitaxel	3.792	122392	21382
Mean			371513.5	
Std.Dev			253899.3	
% RSD			0.532	

Table 7: Details of Accuracy 100%

Injection	Peak Name	RT	Area	Height
1	Ramucirumab	2.306	132405	86096
2	Ramucirumab	2.243	132452	86549
3	Ramucirumab	2.223	133232	84176
4	Paclitaxel	3.546	124465	21784
5	Paclitaxel	3.542	122428	25909
6	Paclitaxel	3.546	124345	21372
Mean			372523.5	
Std.Dev			2508918.3	
% RSD			0.535	

Table 8: Details of Accuracy 150%

Injection	Peak name	Rt	Area	Height
1	Ramucirumab	2.592	142526	76083
2	Ramucirumab	2.573	142527	76348
3	Ramucirumab	2.223	143532	74275
4	Paclitaxel	3.841	135545	21682
5	Paclitaxel	3.882	132558	25508
6	Paclitaxel	3.842	134345	21476
Mean			338742.3	
Std.Dev			840776.2	
% RSD			0.575	

Table 9: accuracy (recovery) data for Ramucirumab

%Concentration (at specification Level)	Area	Amount Added (mg)	Amount Found (mg)	% Recovery	Mean Recovery
50%	656659.5	5.0	5.036	100.7%	99.84%
100%	1304258	10.0	10.003	100.0%	
150%	1854608	14.4	14.224	98.780%	

Sama Divya Jyothi et al, Int. J. Pharm.	. Natural Med., 2023, 11(1): 52-58
---	------------------------------------

Table 10: accuracy (recovery) data for Paclitaxel							
%Concentration Area Amount Added Amount Found % Mean							
(at specification Level)		(mg)	(mg)	Recovery	Recovery		
50%	65800	5.3	5.34	100.8%	100.51%		
100%	124353	10	10.10	100.01%			
150%	177940	14.2	14.45	99.68%			

Table 11: Area of different concentration of Ramucirumab

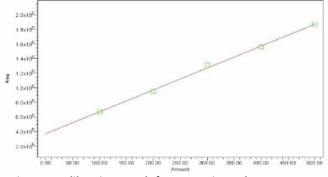
S.No.	Linearity Level	Concentration	Area
1	1	100ppm	668934
2	II	200ppm	956781
3	III	300ppm	1313873
4	IV	400ppm	1563458
5	V	500ppm	1867084
Correlation Coe	0.999		

Table 12: Area of different concentration of Paclitaxel

S.No	Linearity Level	Concentration	Area
1	1	1ppm	66510
2	II	2ppm	94701
3	III	3ppm	124802
4	IV	4ppm	152731
5	V	5ppm	179732
Correlation Coe	0.999		

200000

180000


160000

140000

120000.

00000

163

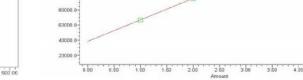


Figure 2 calibration graph for Ramucirumab at 254nm

5.00

4.50

Table 13 Analytical performance parameters of Ramucirumab and Paclitaxel

Parameters	Ramucirumab	Paclitaxel
Slope (m)	66574	12529
Intercept (c)	53592	50245
Correlation coefficient (R ²)	0.999	0.999

Table 14 Results of LOD

Drug name	Baseline noise(µV)	Signal obtained (µV)	S/N ratio
Ramucirumab	52	152	2.9
Paclitaxel	52	156	3

Table 15 Results of LOQ						
Drug name Baseline noise(μV) Signal obtained (μV) S/N ratio						
Ramucirumab	52	522	10.03			
Paclitaxel	52	524	10.1			

Sama Divya Jyothi et al, Int. J. Pharm. Natural Med., 2023, 11(1): 52-58

	System Suitability Results				
S.No	Flow Rate (ml/min)	USP Plate Count	USP Tailing		
1	0.6	5339.9	1.4		
2	0.8	4673.4	1.3		
3	1.0	5216.0	1.4		

Table 16: Flow Rate (ml/min) data for Ramucirumab

Table 17: flow rate (ml/	'min)	data f	for Paclitaxel

		System Suitability Results	
S.No	Flow Rate (ml/min)	USP Plate Count	USP Tailing
1	0.8	7063.3	1.3
2	1.0	6090.3	1.2
3	1.2	6998.0	1.3

Table 18 Change in Organic Composition in the Mobile Phase for Ramucirumab

S.No	Change in Organic	System Suitability Results	
	Composition in the	USP Plate Count	USP Tailing
	Mobile Phase		
1	10% less	4508.4	1.3
2	*Actual	4673.4	1.4
3	10% more	4318.1	1.3

S.No	Change in Organic	System Suitability Results	
	Composition in the	USP Plate Count	USP Tailing
	Mobile Phase		
1	10% less	6387.7	1.2
2	*Actual	6090.3	1.2
3	10% more	6232.5	1.2

4. Conclusion

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Ramucirumab and Paclitaxel was done by RP-HPLC. The Phosphate buffer was $p^{H}4.5$ and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of P^{H} 4.5(20:80 v/v). kromosil C₁₈ column (250mm x 4.6mm)5µg or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 254 nm. The solutions were chromatographed at a constant flow rate of 1ml min⁻¹. The linearity range of Ramucirumab and Paclitaxel were found to be from 100-500 µg/ml of Ramucirumab and 1-5µg/ml of Paclitaxel. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. Ramucirumab %RSD0.2 and %RSD 0.6. Intermediate precision Paclitaxel for Ramucirumab %RSD 0.2 and Paclitaxel %RSD 0.1. The percentage recovery varies from 98-102% of Ramucirumab and Paclitaxel. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

5. References

- [1] Dr. Kealey and P.J Haines, Analytical Chemistry, 1stedition, Bios Publisher, (2002), PP 1-7.
- [2] A.BraithWait and F.J.Smith, Chromatographic Met hods, 5thedition, Kluwer Academic Publisher, (1996), PP 1-2.
- [3] Andrea Weston and Phyllisr. Brown, HPLC Principle and Practice, 1st edition,
- [4] Academic press, (1997), PP 24-37.
- [5] Yuri Kazakevich and Rosario Lobrutto, HPLC for Pharmaceutical Scientists, 1stedition, Wiley Interscience A JohnWiley & Sons, Inc., Publication, (2007), PP 15-23.
- [6] URL:http://en.wikipedia.org/wiki/Chromatography.
- [7] Meyer V.R. Practical High-Performance Liquid Chromatography, 4th Ed. England, John Wiley & Sons Ltd, (2004), PP 7-8.
- [8] Sahajwalla CG a new drug development, Vol 141, Marcel Dekker Inc., New York, (2004), PP 421–426.

- [9] Introduction to Column. (Online), URL:http://amit patel745.topcities.com/index_files/study/column care.pdf
- [10] Detectors used in HPLC (online)URL:http://wiki.a nswers.com/Q/What_detectors_are_used_in_HPL C.
- [11] Dr. K. Nageswara Rao, Raghava Doonaboyina, R. Mahesh Babu, Analytical Method Development and Validation for the Simultaneous Estimation of Ceftolozane and Tazobactam in Its Bulk and Pharmaceutical Dosage Forms. Asian .J. Chem Pharm.Res., 2018, 6(2): 43-48.
- [12] Dr. K. Nageswara Rao, Raghava Doonaboyina, R.Hema, Method Development and Validation of Brinzolamide and Brimonidine in Its Bulk and Ophthalmic Dosage Form by Using RP-HPLC. Int. J. Chem, Pharm, Sci., 2018, 6(11): 306-312.
- [13] Dr. K. Nageswara Rao, Raghava Doonaboyina, S. Rajesh. Analytical Method Development and Validation for the Simultaneous Estimation of Empagliflozin and Linagliptin in Pharmaceutical Dosage Forms by RP-HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(11): 313-318.
- [14] Dr. K. Nageswara Rao, Raghava Doonaboyina, Bhavani Analytical Method Development and Validation for the Simultaneous Estimation of Buprenorphine and Naloxone By RP- HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 279-284.
- [15] Dr. K. Nageswara Rao, Raghava Doonaboyina, M.Jayasri Simultaneous Estimation of Neutipotent and Palonesetron in Its Bulk and Pharmaceutical Dosage Form by RPHPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 285-290.
- [16] Dr. K. Nageswara Rao, Raghava Doonaboyina, Hope Evangeline Novel RP-HPLC Method Development and Validation of Dasatinib and Lenvatinib in Bulk and Pharmaceutical Dosage Forms. Int. J. Curnt. Tren. Pharm, Res., Res., 2018, 6(2): 43-49.
- [17] Dr. K. Nageswara Rao, Raghava Doonaboyina, T. Naga Sirisha Devi Analytical Method Development and Validation for the Simultaneous Estimation of Darunavir and Cobicistat by RP- HPLC Method. Int. J. Curnt. Tren. Pharm, Res., Res., 2019, 6(2): 50-55.