

Research Article

Analytical Method Development and Validation for the Simultaneous Estimation of Praziquantel and Ivermectin in Its Bulk and Pharmaceutical Dosage Forms

Datla Sai Mounika^{1*}, Gope Edward Raju², Vaddi Lakshmi Priya³, Doonaboyina Raghava⁴, Kavala Nageswara Rao⁵

Department of Pharmaceutical Analysis, K.G.R.L College of Pharmacy, Bhimavaram-534201, A.P, India

Abstract

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Praziquantel and Ivermectin was done by RP-HPLC. The Phosphate buffer was $p^{H}3.0$ and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of 70:30 % v/ v. Inertsil C₁₈ column C18 (4.6 x 150mm, 5µm) or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 260nm. The solutions were chromatographed at a constant flow rate of 0.8 ml/min. the linearity range of Praziquantel and Ivermectin were found to be from 100-500µg/ml of Praziquantel and 1-5µg/ml of Ivermectin. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. The percentage recovery varies from 98-102% of Praziquantel and Ivermectin. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

Keywords: Inertsil C18, Praziquantel and Ivermectin, RP HPLC

Article Info

* Corresponding Author Datla Sai Mounika	
Department of Pharmaceutical Analysis,	Por Sector
K.G.R.L College of Pharmacy, Bhimavaram-534201, A.P, India	Journal Or Code

Article History: Received 15 July 2023, Accepted 27 August 2023, Available Online 14 Oct 2023

©2023 Production and hosting by Pharma Research Library Publishers. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Citation: Datla Sai Mounika, et al. Analytical Method Development and Validation for the Simultaneous Estimation of Praziguantel Andivermectin in Its Bulk and Pharmaceutical Dosage Forms. Int. J. Med. Pharm. Res., 2023, 11(1): 70-75.

Contents

1.	Introduction.	. 70
2.	Methodology	. 71
3.	Results and Discussion.	71
4.	Conclusion	.74
5.	References	. 74

1. Introduction

Praziquantel is an anthelmintic medication used to treat a number of parasitic worm infections such as schistosomiasis. Ivermectin is a semi-synthetic antiparasitic medication derived from avermectins, a class of highlyactive broad-spectrum antiparasitic agents isolated from the fermentation products of *Streptomyces avermitilis*. Ivermectin itself is a mixture of two avermectins, comprising roughly 90% 5-O-demethyl-22,23dihydroavermectin A_{1a} (22,23-dihydroavermectin) and 10% 5-O-demethyl-25-de(1-methylpropyl)-22,23-dihydro-25-(1methylethyl)avermectin. Ivermectin is mainly used in humans in the treatment of onchocerciasis, but may also be effective against other worm infestations (such as strongyloidiasis, ascariasis, trichuriasis and enterobiasis). Applied topically, it may be used in the treatment of head lice infestation.

2. Methodology

Instrumentation

The instrument used was HPLC Waters model No. 2695 separation module.2487 UV detector, Empower software. The stationary phase used was Inertsil C₁₈ column C18 (4.6x150mm, 5 μ m). Digital weighing balance-Model number Afcoset ER-200A, Sonicator (Enertech)-SE60US, pH meter Model number Adwa–AD 1020, UV/VIS spectrophotometer LABINDIA UV 3000⁺.

Materials and reagents

Praziquantel and Ivermectin were gift samples supplied by Mylan and Cipla labs respectively Acetonitrile for HPLC was supplied by MolychemKH₂PO₄ was supplied by Finer chemical LTD Water and Methanol for HPLC was supplied by Lichrosolv.

Method development

Six trials were made by changing the mobile phase ratios and solvents ACN: water (30:70 v/v) water: Methanol P^{H} 2.5 (30:70 v/v) ACN: Water (80:20) v/v Phosphate buffer P^{H} 4.5: Methanol (35:65 v/v) Phosphate buffer: Methanol P^{H} 4.5 (65:35 v/v) Phosphate buffer: Methanol P^{H} 4.5 (20:80 v/v). Finally, the mobile phase optimized was 30% buffer 70% Methanol.

Chromatographic conditions

The Phosphate buffer was $p^{H}3.0$ and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of 70:30 % v/ v. Inertsil C₁₈ column C18 (4.6 x 150mm, 5µm) or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 260 nm. The solutions were chromatographed at a constant flow rate of 0.8 ml/min.

3. Results and discussion

Table 1: Results o	f system suitabili	ty parameters f	for Praziquante	l and Ivermectin
--------------------	--------------------	-----------------	-----------------	------------------

S.No	Name	Retention time(min)	Area (μV sec)	Height (µV)	USP resolution	USP tailing	USP plate count
1	Praziquantel	2.5	124505	213642		1.2	4673.4
2	Ivermectin	3.9	1308495	154566	6 0	1.3	6090.3

Table 2: Results of methor	precision for Praziquantel
----------------------------	----------------------------

Injection	Area
Injection-1	1302729
Injection-2	1302947
Injection-3	1303236
Injection-4	1303977
Injection-5	1309759

Datla Sai Mounika et al, Int. J. Med. Pharm. Res., 2023, 11(1): 70-75

Average	1304529.8
Standard Deviation	2961.1
%RSD	0.2

Injection	Area
Injection-1	123149
Injection-2	123766
Injection-3	124271
Injection-4	124691
Injection-5	124956
Average	124162.7
Standard Deviation	725.6
%RSD	0.6

Table 3: Results of method precision for Ivermectin

Table 4: Results of Intermediate precision for Praziquantel

Injection	Area
Injection-1	1300148
Injection-2	1304520
Injection-3	1305937
Injection-4	1306476
Injection-5	130871
Average	1305070.2
Standard Deviation	3061.8
%RSD	0.2

Table 5: Results of Intermediate precision for Ivermectin

Injection	Area
Injection-1	122487
Injection-2	122626
Injection-3	122632
Injection-4	122702
Injection-5	122962
Average	122681.8
Standard Deviation	174.8
%RSD	0.1

Table 6: accuracy (recovery) data for Praziquantel

%Concentration (at specification Level)	Area	Amount Added (mg)	Amount Found (mg)	% Recovery	Mean Recovery
50%	656659.5	5.0	5.036	100.7%	99.84%
100%	1304258	10.0	10.003	100.0%	
150%	1854608	14.4	14.224	98.780%	

Table 7: accuracy (recovery) data for Ivermectin

%Concentration (at specification Level)	Area	Amount Added (mg)	Amount Found (mg)	% Recovery	Mean Recovery
50%	65800	5.3	5.34	100.8%	100.51%
100%	124353	10	10.10	100.01%	
150%	177940	14.2	14.45	99.68%	

Datla Sai Mounika *et al, Int. J. Med. Pharm. Res., 2023, 11(1): 70-75* Table 8: Area of different concentration of Praziguantel

S.No.	Linearity Level	Concentration	Area
1		100ppm	668934
2	II	200ppm	956781
3	III	300ppm	1313873
4	IV	400ppm	1563458
5	V	500ppm	1867084
Correlation Coefficient			0.999

Table 9: Area of different concentration of Ivermectin

S.No	Linearity Level	Concentration	Area
1	l I	1ppm	66510
2	II	2ppm	94701
3	III	3ppm	124802
4	IV	4ppm	152731
5	V	5ppm	179732
Correlation Coefficient			0.999

Table 10 Results of LOQ

Drug name	Baseline noise(µV)	Signal obtained (µV)	S/N ratio
Praziquantel	52	522	10.03
Ivermectin	52	524	10.1

Table 11: Flow Rate (ml/min) data for Praziquantel

		System Suitability Results	
	Flow Rate (ml/min)	USP Plate Count	USP Tailing
S.No			
1	0.8	7063.3	1.3
2	1.0	6090.3	1.2
3	1.2	6998.0	1.3

Table 12: flow rate (ml/min) data for Ivermectin

		System Suitability Results	
S.No	Flow Rate (ml/min)	USP Plate Count	USP Tailing
1	0.8	7063.3	1.3
2	1.0	6090.3	1.2
3	1.2	6998.0	1.3

Table 13: Change in Organic Composition in the Mobile Phase for Praziquantel

S.No	Change in Organic	System Suitability Results	
	Composition in the	USP Plate Count	USP Tailing
	Mobile Phase		
1	10% less	4508.4	1.3
2	*Actual	4673.4	1.4
3	10% more	4318.1	1.3

Table 14: Change in Organic Composition in the Mobile Phase for Ivermectin

S.No	Change in Organic	System Suitability Results	
	Composition in the	USP Plate Count	USP Tailing
	Mobile Phase		
1	10% less	6387.7	1.2
2	*Actual	6090.3	1.2
3	10% more	6232.5	1.2

4. Conclusion

This High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Praziguantel and Ivermectin was done by RP-HPLC. The Phosphate buffer was p^{H} 3.0 and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of 70:30 % v/ v. Inertsil C_{18} column C18 (4.6 x 150mm, 5µm) or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 260 nm. The solutions were chromatographed at a constant flow rate of 0.8 ml/min. the linearity range of Praziguantel and Ivermectin were found to be from 100-500 µg/ml of Praziguantel and 1-5µg/ml of Ivermectin. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. The percentage recovery varies from 98-102% of Praziguantel and Ivermectin. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

5. References

- B. Saidulu et al, Analytical Method Development and Validation for Simultaneous Estimation of Albendazole and Ivermectin Tablet of Dosage Form by RP-HPLC. International Journal of Chemistry and Pharmaceutical Sciences
- Limbani Rajen K. Et Al, Method Development and Validation of Ivermectin and Clorsulon in their Combined Dosage Form. International Bulletin of Drug Research., 4(6): 140-147, 2014
- Elena Gabriela Oltean et al, Development and Validation of a RP- HPLC Method for the Quantitation Studies of Ivermectin in Solutions Dosage Forms. Medicamentul Veterinar Veterinary Drug Vol. 5 (2) 2011, December.
- R. S. Chandan et al, Development and Validation of the Determination of Albendazole Residues Pharmaceutical Manufacturing Equipment Surfaces. International Journal of Medical, Health, Biomedical and Pharmaceutical Engineering Vol:7, No:12, 2013.
- FláviaLada Degaut Pontes Et Al, Development and Validation of an Hplc-Ms/Ms Method for Simultaneous Determination of Ivermectin, Febantel, Praziquantel, PyrantelPamoate And Related Compounds In Fixed Dose Combination For Veterinary Use. Asian Journal of Pharmaceutical and Clinical Research Vol 6, Issue 2, 2013

- Shurbaji M et al, Development and validation of a new HPLC-UV method for the simultaneous determination of triclabendazole and ivermectin B1a in a pharmaceutical formulation. J AOAC Int. 2010 Nov-Dec; 93(6): 1868-73
- Anna Kulik Et Al, HPLC Method for Identification and Quantification of Benzimidazole Derivatives in Antiparasitic Drugs. Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 68 No. 6 pp. 823ñ829, 2011
- M. SPhatak et al, Development And Validation of A High Performance Liquid Chromatography Method For The Simultaneous Quantification of Albendazole and Closantel from Veterinary Formulation. International Journal of Research In Pharmacy And Chemistry, 2014, 4(4), 972-976.
- NagarajuSwamy et al, Rapid Quantitative Assay of Albendazole in Bulk Drug and Pharmaceuticals by UHPLC. Chemical Sciences Journal, Vol. 2013: CSJ-113
- Tripathi K.D. Essential of Medical Pharmacology, 5th Edn, Jaypee Brothers Medical publisher New Delhi. pp: 515-516.
- 11. Beckett A.H and StenlakeJ.B;text book of pharmaceutical chemistry 4th Edn,-part 2 CBS publishers and Distriburots, New Delhi, 1998: 278,307.
- Douglas Skoog A., James Hollar F. and Timothy Nieman, A Principles of Instrumental Analysis.
 5thed., Thomson Learning Inc. Singapore, 1998;110,300
- 13. Sethi, P.D., Quantitative Analysis of Drugs in PharamceuticalFormulation,3rded.,CBS Publishers and Distributors, 1997; 1-29,50-64
- 14. Mendham, R.C., Denny, J.D., Barnis, M. and Thomas, J.K., Vogel"s Text Book of Quantitative Chemical Analysis, 6th Ed., Pearson Education, 2003; 1, 676.
- 15. Dr. K. Nageswara Rao, Raghava Doonaboyina, R. Mahesh Babu, Analytical Method Development and Validation for the Simultaneous Estimation of Ceftolozane and Tazobactam in Its Bulk and Pharmaceutical Dosage Forms. Asian .J. Chem Pharm.Res., 2018, 6(2): 43-48.
- Dr. K. Nageswara Rao, Raghava Doonaboyina, R.Hema, Method Development and Validation of Brinzolamide and Brimonidine in Its Bulk and Ophthalmic Dosage Form by Using RP-HPLC. Int. J. Chem, Pharm, Sci., 2018, 6(11): 306-312.
- Dr. K. Nageswara Rao, Raghava Doonaboyina, S. Rajesh. Analytical Method Development and Validation for the Simultaneous Estimation of Empagliflozin and Linagliptin in Pharmaceutical Dosage Forms by RP-HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(11): 313-318.
- 18. Dr. K. Nageswara Rao, Raghava Doonaboyina, Bhavani Analytical Method Development and

Validation for the Simultaneous Estimation of Buprenorphine and Naloxone By RP- HPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 279-284.

- Dr. K. Nageswara Rao, Raghava Doonaboyina, M.Jayasri Simultaneous Estimation of Neutipotent and Palonesetron in Its Bulk and Pharmaceutical Dosage Form by RPHPLC Method. Int. J. Chem, Pharm, Sci., 2018, 6(10): 285-290.
- Dr. K. Nageswara Rao, Raghava Doonaboyina, Hope Evangeline Novel RP-HPLC Method Development and Validation of Dasatinib and Lenvatinib in Bulk and Pharmaceutical Dosage Forms. Int. J. Curnt. Tren. Pharm, Res., Res., 2018, 6(2): 43-49.
- Dr. K. Nageswara Rao, Raghava Doonaboyina, T. Naga Sirisha Devi Analytical Method Development and Validation for the Simultaneous Estimation of Darunavir and Cobicistat by RP- HPLC Method. Int. J. Curnt. Tren. Pharm, Res., Res., 2019, 6(2): 50-55.