

Research Article

Simultaneous Estimation of UV Spectroscopy and Method Development and Validation for Clofibrate and Tolbutamide by RP-HPLC

Mukku Sonia*, Gope Edward Raju, Kandregula Uma Maheswari, Doonaboyina Raghava, Kavala Nageswara Rao

Department of Pharmaceutical Analysis, K.G.R.L College of Pharmacy, Bhimavaram-534201, Andhra Pradesh, India.

Abstract

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Tolbutamide and Clofibrate was done by RP-HPLC. The Phosphate buffer was p^{H} 3.0 and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of 70:30 % v/ v. Inertsil C₁₈ column C18 (4.6 x 150mm, 5µm) or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 260nm. The solutions were chromatographed at a constant flow rate of 0.8 ml/min. the linearity range of Tolbutamide and Clofibrate were found to be from 100-500 µg/ml of Tolbutamide and 1-5µg/ml of Clofibrate. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. The percentage recovery varies from 98-102% of Tolbutamide and Clofibrate. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision.

Keywords: Phosphate buffer, Inertsil C₁₈ column, Tolbutamide and Clofibrate, RP-HPLC.

Article History: Received 29 July 2023, Accepted 31 Aug 2023, Available Online 20 Oct 2023

©2023Production and hosting by Pharma Research Library Publishers, All rights reserved.

Citation: Mukku Sonia, et al. Simultaneous Estimation of UV Spectroscopy and Method Development and Validation for Clofibrate and Tolbutamide by RP-HPLC, Int. J. of Chem. and Pharm. Sci., 11(1), 2023: 55-58.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Contents:

1. Introduction	55
2. Materials and Methods	56
3. Results and Discussion	56
4. Conclusion	
5. References	58

*Corresponding author	
Mukku Sonia,	드 (2년)
Department of Pharmaceutical Analysis,	
K.G.R.L College of Pharmacy,	「「「「「「「」」」「「「」」」「「「」」」「「」」「「」」」「「」」」「「」」」」
Bhimavaram-534201, A.P, India	JOURNAL QR-CODE

1. Introduction

Clofibrate is an antilipidemic agent similar to gemfibrozil. It acts to lower elevated serum lipids by reducing the very low-density lipoprotein fraction (Sf 20-400) rich in triglycerides. Serum cholesterol may be decreased, particularly in those patients whose cholesterol elevation is due to the presence of IDL as a result of Type III hyperparathyroidism. Tolbutamide is an oral antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus (NIDDM). It is structurally similar to acetohexamide, chlorpropamide and tolazamide and belongs to the sulfonylurea class of insulin

secretagogues, which act by stimulating β cells of the pancreas to release insulin.

2. Methodology

Instrumentation:

Instruments used in HPLC Alliance waters and model no.2695 separation module. UV spectrophotometer software LANBINDIA UV 3000. PH meter model no.AD 1020. Weighing machine model no. Afcoset ER-200A. Borosil pippettes, burettes and beakers.

Materials and reagents:

Clofibrate and Tolbutamide were gifted by the cipla laboratories. Water, methanol and acetonitrile for HPLC are supplied merck and potassium phosphate was supplied by finger chemical pvt ltd.

Method development:

Initially the mobile phase tried was methanol: Ammonium acetate buffer and Methanol: phosphate buffer with various combinations of pH as well as varying proportions. Finally, the mobile phase was optimized to potassium dihydrogen phosphate with buffer (pH 3.0), Methanol in proportion 30: 70 v/v respectively. UV spectrum of 10 μ g / ml Clofibrate and Tolbutamide in diluents (mobile phase composition) was recorded by scanning in the range of 200nm to 400nm. From the UV spectrum wavelength selected as 260. At this wavelength both the drugs show good absorbance. The method was performed with various columns like C18 column, hypersil column, lichrosorb, and inertsil ODS column. Inertsil ODS (4.6 x 150mm, 5 m) was found to be ideal as it gave good peak shape and resolution at 0.8ml/min flow.

Chromatographic conditions:

The cinematographic conditions were succesfully developed for the separation of clofibrate and tolbutamide by using Waters HPLC with auto sampler and PAD. Inertsil ODS (4.6 x 150mm, 5 μ m) column, flow rate was 1ml per min. Detection wave length was 260 nm. Mobile phase ratio was 30% buffer and 70% methanol buffer (6.8 grams of potassium dihydrogen ortho phosphate in1000 ml water pH adjusted with ortho phaosparic acid.).

3. Results and Discussion

Injection	Area	
Injection-1	1302729	
Injection-2	1302947	
Injection-3	1303236	
Injection-4	1303977	
Injection-5	1309759	
Average	1304529.8	
Standard Deviation	2961.1	
%RSD	0.2	

Injection	Area
Injection-1	123149
Injection-2	123766
Injection-3	124271
Injection-4	124691
Injection-5	124956
Average	124162.7
Standard Deviation	725.6
%RSD	0.6

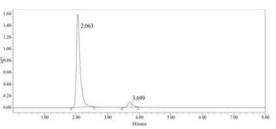


Figure no 1: chromatogram for standard injection

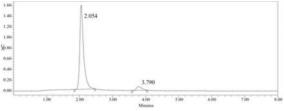
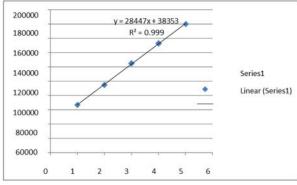
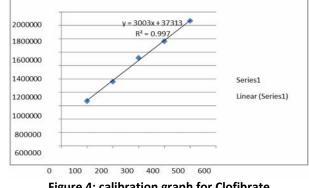


Figure .2 chromatogram for sample injection

Table 3: Results of Intermediate precision for
Tolbutamide


Injection	Area
Injection-1	1300148
Injection-2	1304520
Injection-3	1305937
Injection-4	1306476
Injection-5	130871
Average	1305070.2
Standard Deviation	3061.8
%RSD	0.2


Injection	Area
Injection-1	122487
Injection-2	122626
Injection-3	122632
Injection-4	122702
Injection-5	122962
Average	122681.8
Standard Deviation	174.8
%RSD	0.1

Mukku Sonia, et al. Int. J. of Chem. and Pharm. Sci., 11(1), 2023: 55-58 Table 5: accuracy (recovery) data for Tolbutamide

ruble 5. decuracy (recovery) data for robutalinae					
%Concentration	Area	Amount	Amount	%	
(at specification		Added	Found	Recovery	Mean
Level)		(mg)	(mg)		Recovery
50%	656659.5	5.0	5.036	100.7%	
100%	1304258	10.0	10.003	100.0%	
150%	1854608	14.4	14.224	98.780%	99.84%

Table 6: accuracy (recovery) data for Clofibrate Amount Found %Concentration Area Amount % Recovery (at specification Added (mg) Mean Level) (mg) Recovery 5.34 50% 65800 5.3 100.8% 100% 124353 10 10.10 100.01% 150% 177940 14.2 14.45 99.68% 100.51%

Figure 3: calibration graph for Tolbutamide

Figure 4: calibration graph for Clofibrate

Table 7 : Analytical performance parameters of Tolbutamide and Clofibrate

Parameters	Tolbutamide	Clofibrate
Slope (m)	66574	12529
Intercept (c)	53592	50245
Correlation coefficient (R ²)	0.999	0.999

Table 8: Results of LOD					
Drug name	Baseline noise (µV)	Signal obtained (µV)	S/N ratio		
Tolbutamide	52	152	2.9		
Clofibrate	52	156	3		

Table 9: Results of LOQ

Drug name Baseline noise(µV)		Signal obtained (µV)	S/N ratio	
Tolbutamide	52	522	10.03	
Clofibrate	52	524	10.1	

Table 10: Flow Rate (ml/min) data for Tolbutamide

		System Suitability Results	
S. No	Flow Rate(ml/min)	USP Plate Count	USP Tailing
1	0.6	5339.9	1.4
2	0.8	4673.4	1.3
3	1.0	5216.0	1.4

Mukku Sonia, et al. Int. J. of Chem. and Pharm. Sci., 11(1), 2023: 55-58 Table 11: flow rate (ml/min) data for Clofibrate

	Flow Rate	System Suitability Results		
S. No	(ml/min)	USP Plate Count	USP Tailing	
1	0.8	7063.3	1.3	
2	1.0	6090.3	1.2	
3	1.2	6998.0	1.3	

4. Conclusion

High performance liquid chromatography is at present one of the most sophisticated tool of the analysis. The estimation of Tolbutamide and Clofibrate was done by RP-HPLC. The Phosphate buffer was p^{H} 3.0 and the mobile phase was optimized with consists of Methanol: Phosphate buffer mixed in the ratio of 70:30 % v/ v. Inertsil C₁₈ column C18 (4.6 x 150mm, 5µm) or equivalent chemically bonded to porous silica particles was used as stationary phase. The detection was carried out using UV detector at 260 nm. The solutions were chromatographed at a constant flow rate of 0.8 ml/min. the linearity range of Tolbutamide and Clofibrate were found to be from g/ml of Tolbutamide and 1-5 g/ml of 100-500 Clofibrate. Linear regression coefficient was not more than 0.999. The values of % RSD are less than 2% indicating accuracy and precision of the method. The percentage recovery varies from 98-102% of Tolbutamide and Clofibrate. LOD and LOQ were found to be within limit. The results obtained on the validation parameters met ICH and USP requirements .it inferred the method found to be simple, accurate, precise and linear. The method was found to be having suitable application in routine laboratory analysis with high degree of accuracy and precision and Vincristine in API and Pharmaceutical dosage form.

5. References

- Beckett A.H and Stenlake J.B; text book of pharmaceutical chemistry 4th Edn,-part 2 CBS publishers and Distriburots, New Delhi,1998:278,307
- [2] Douglas Skoog A., James Hollar F. and Timothy Nieman, A Principles of Instrumental Analysis.
 5thed., Thomson Learning Inc. Singapore, 1998;110,300
- [3] Sethi, P.D.,Quantitative Analysis of Drugs in Pharamceutical Formulation,3rded.,CBS publishers and distributors , 1997; 1-29, 50-64.
- [4] Mendham, R.C., Denny, J.D., Barnis , M. and Thomas, J.K., Vogel"s, Text Book of Quantitative Chemical Analysis, 6thed., Pearson Education,2003; 1, 676
- [5] Sharma, B.K., Instrumental method of Chemical Analysis, 24th ed., GOEL Publishing House, Meerut,2005; 46, 68.
- [6] Chatwal G.R and Anand K.S;instrumental methods of chemical analysis,5th Edn Himalaya publishing House, mumbai, 2002, 2-149

- [7] Willard H.H, Merritt L.L, Dean J.A. and settle F.A: Instrumental Methods of analysis, 7th Edn, CBS Publishers and Distributors, New Delhi 1988,436-439.
- [8] Munson J.W: Modern Methods of Pharmaceutical Analysis, Medical book distributors, Mumbai, 2001, 17-54.
- [9] Synder K.L,Kriklad J.J and Glajch J.L:Practical HPLC Method Development 2nd Edn, Wiley-Interscience Publication, USA, 1983,1-10.
- [10] Bently and Drivers: text book of pharmaceutical chemistry, 8th Edn, O'Brein, oxford university press, 1985, 1-3.
- [11] Indian pharmacopeia 2007 vol –I pg.no-715.
- [12] British pharmacopeia 2007 vol-I pg.no-136.
- [13] B.D Shah, S. Kumar, Y. C. Yadav, A.K. Seth, T. K. Ghelani, G. J. Deshmukh
- [14] D. Madhu Latha et al., Development and Validation of Rp-Hplc Method for Quantitative Analysis Tolbutamide In Pure And Pharmaceutical Formulations Int. J. Chem. Sci.: 11(4), 2013, 1607-1614 ISSN 0972-768X
- [15] Kuldeep Sharma RP-HPLC Analytical Method for the Quantitation of Tolbutamide in Formulation Vehicle Homogenecity and Stability Evaluation in Pre- Clinical Study Formulation Samples
- [16] Dennis J. Weber High-pressure liquid chromatographic analysis of tolbutamide in serum Volume65, Issue10, October1976.
- [17] V Das gupta qualification chlofibrate tolbutamide in tablets by stability and indicating reverse phase high performance liquid chromatography volume 17, 1984 - issue 18.