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A B S T R A C T
Pharmacophore modeling is a successful yet very diverse subfield of computer-aided drug design. The concept of the
pharmacophore has been widely applied to the rational design of novel drugs. In this paper, we review the computational
implementation of this concept and its common usage in the drug discovery process. Pharmacophores can be used to
represent and identify molecules on a 2D or 3D level by schematically depicting the key elements of molecular recognition.
The most common application of pharmacophores is virtual screening, and different strategies are possible depending on the
prior knowledge. However, the pharmacophore concept is also useful for ADME-tox modeling, side effect, and off-target
prediction as well as target identification. Furthermore, pharmacophores are often combined with molecular docking
simulations to improve virtual screening. We conclude this review by summarizing the new areas where significant progress
may be expected through the application of pharmacophore modeling; these include protein–protein interaction inhibitors and
protein design.
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1. Introduction
Definition: A Pharmacophore is an ensemble of steric,
electrostatic and hydrophobic properties which is essential
for optimal supramolecular interactions with a biolocial
receptor, to modulate or inhibit a biological effect. A
Pharmacophore does not represent a concrete molecule, but
an abstract concept which describes the common molecular
properties of interaction with the receptor. The
Pharmacophore anchors the agent with the receptor. With
pharmacophoric models one can define special properties
(pharmacophoric points) based on the structure of the
receptor or based on the structure of a known agent. This
pharmacophoric points can be checked against a database of
pharmacophores.
Characterization:
1) Location of the functional groups (e.g. proton

donor/acceptor, hydrophobic  parts)
2) Stabilization of the most effective conformation
3) Lipinski’s rule of five: The following properties are

essential for good permeation
 The molecule has less than five proton-

donators
 The molecular weight is smaller than 500

Dalton
 log P smaller than 5
 The molecule has less acceptors than 10
 The molecule should use biological

transporters otherwise the ligand is attached too
strong or it cannot be transported.

4) Minimum of pharmacophoric points:3

Figure 1

IUPAC  defines a pharmacophore to be “an ensemble of
steric and electronic features to ensure the optimal
supramolecular interactions with a specific biological
target and to trigger (or block) its biological response. “
What is a pharmacophore?
Historical perspective: The original concept of the
pharmacophore was developed by Paul Ehrlich during the
late 1800s.43 At that time, the understanding was that
certain “chemical groups” or func- tions in a molecule
were responsible for a biological effect, and molecules
with similar effect had similar functions in common. The
word pharmacophore was coined much later, by Schueler
in his 1960 book Chemobiodynamics and Drug Design,
and was defined as activity“a molecular framework that
carries (phoros) the essential features responsible for a
drug’s (pharmacon) biological.”44 The definition of a
pharmacophore was therefore no longer concerned with

“chemical groups” but “patterns of abstract features.”
Since 1997, a pharmacophore has been defined by the
International Union of Pure and Applied Chemistry as: “A
pharmacophore is the ensemble of steric and electronic
features that is necessary to ensure the optimal supramo-
lecular interactions with a specific biological target and to
trigger (or block) its biological response.”

The pharmacophore should be considered as the largest
common denominator of the molecular interaction features
shared by a set of active molecules. Thus a pharmacophore
does not represent a real molecule or a set of chemical
groups, but is an abstract concept. Despite this clear
definition, the term pharmacophore is often misused by
many in medicinal chemistry to describe simple yet
essential chemical functionalities in a molecule (such as
guanidine or sulfonamides), or common chemical
scaffolds (such as flavones or prostaglandins). Often the
long definition is simplified to “A pharmacophore is the
pattern of features of a molecule that is responsible for a
biological effect,” which captures the essential notion that
a pharmacophore is built from features rather than defined
chemical groups.

2. Pharmacophore concepts in CADD
While the pharmacophore concept predates any form of
electronic computer, it has nevertheless become an impor-
tant tool in CADD. Every type of atom or group in a mol-
ecule that exhibits certain properties related to molecular
recognition can be reduced to a pharmacophore feature.
These molecular patterns can be labeled as hydrogen bond
donors or acceptors, cationic, anionic, aromatic, or
hydrophobic, and any possible combinations. Different
molecules can be compared at the pharmacophore level;
this usage is often described as “pharmacophore
fingerprints.” When only a few pharmacophore features are
considered in a 3D model the pharmacophore is sometimes
described as a “query.”
Pharmacophore fingerprint
While molecules are 3D entities, the pharmacophore rep-
resentation reduces a molecule to a collection of features at
the 2D or 3D level.47,48 A pharmacophore fingerprint is an
extension of this concept, and typically annotates a
molecule as a unique data string. All possible three-point or
four-point sets of pharmacophore features (points) are
enumerated for each ligand. The distance between the
feature points is counted in bonds (for topological
fingerprints), or by distance-binning when using 3D fin-
gerprints (Figure 1). The resulting fingerprint is a string
describing the frequency of every possible combination at
predefined positions within the string. Several variants of
pharmacophore fingerprints have been designed and are
frequently used. Such a fingerprint can be used to analyze
the similarity between molecules or among a library of
molecules. Alternatively, a fingerprint model can be used to
analyze the common elements of active ligands to identify
the key contributing features to the biological function.
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Figure 2

Sonophoresis-Activated Drug Delivery Systems
This type of activation-controlled drug delivery system
utilizes ultrasonic energy to activate (or trigger) the delivery
of drugs from a polymeric drug delivery device. The system
can be fabricated from either a non-degradable polymer,
such as ethylene–vinyl acetate copolymer, or a bioerodible
polymer, such as poly [bis(p-carboxyphenoxy)alkane
anhydride].The potential application of sonophoresis (or
phonophoresis) to regulate the delivery of drugs was
recently reviewed.
Pharmacophore model or query
A pharmacophore model consists of a few features
organized in a specific 3D pattern.50 Each feature is
typically represented as a sphere (although variants exist)
with a radius determining the tolerance on the deviation
from the exact position ( Figure 2). The features can be
labeled as a single feature or any logic combination
consisting of “AND,” “OR,” and “NOT” to combine
different interaction patterns within one label. Additional
features can describe forbidden volume interactions
(typically to represent the receptor boundary). Such
pharmacophore features are typically used as queries to
screen small molecule libraries of compounds.51 In these
libraries all the compounds are present in their low-energy
biorelevant conformations. Each of these con- formations is
fitted to the pharmacophore query by aligning the
pharmacophore features of the molecule and the query is
composed. If a molecule can be fitted inside the spheres
representing the query features it is considered a hit
molecule. Often the pharmacophore query can be too
complex to find hit molecules from a given library, and
partial matching may be allowed. In such cases only certain
features considered essential for activity are matched.
Additional uses of such models are to align molecules or
facilitate molecular dock- ing simulations.
Pharmacophore modeling in virtual screening:
Pharmacophore modeling is most often applied to virtual
screening in order to identify molecules triggering the
desired biological effect. For this purpose, researchers
create a pharmacophore model (query) that most likely
encodes the correct 3D organization of the required
interaction  pattern.
Depending on how much is known about the particular
protein target, different options are available to construct
such a query (Figure 3). In general, it is good practice to
divide the ligand data into two sets, a training and an
evaluation set to validate the generated pharmacophore
query, when multiple active ligands (and inactive
derivatives) are known.

Figure 3
While in all these cases pharmacophore queries are
considered positive filters to identify compounds, they may
in fact also be used as negative filters to avoid side effects
as well.
No protein structure and no ligand structure is known:
If the target structure and all its ligands are unknown,
pharma- cophore modeling is impossible. The only option
to employ the pharmacophore principle would be to design
a diverse library employing a diversity metric based on
pharmacophore fingerprints to ensure optimal diversity of
the library, contain- ing a wide variety of molecules with
different pharmacophore feature composition. Indeed,
considering the large number of available and potential
compounds, the trend is to design libraries very carefully in
order to cover chemical space efficiently in any search
process.
No protein structure, but active ligand structures  are
known:
The other scenario is that the structure of the receptor (and
any complex with the ligand) is unknown. This is
frequently the case in drug discovery. If only a single active
molecule is known, then it is impossible to map the key
contributing pharmacophore features onto the molecule,
and the only option may be to use similarity searches (such
as using phar- macophore fingerprints) to retrieve similar
molecules.60 Once these have been tested, a set of multiple
active and inactive compounds may be known and more
advanced pharmacoph- ore modeling can be utilized.

When a set of active ligands of known structure, with sim-
ilar or different scaffolds, is available, then it is possible to
use ligand-based pharmacophore modeling. The
elucidation of the putative pharmacophore involves two
steps. First, the conformational space of the flexible
molecules needs to be covered extensively since the
bioactive conformations are unknown. Second, the
molecules need to be aligned by com- mon pharmacophore
features, which can be retained in a 3D model. Using
inactive derivatives, the essence of the features as well as
the permitted steric arrangement of the ligands can be
mapped as well. The Catalyst-HypoGen algorithm in
particular stands out from the variety of tools available for
this purpose.62 This is a combination of QSAR and the
pharmacophore method. It attempts to correlate structure
and activity values (Ki or half maximal inhibitory
concentra- tion [IC50]) by constructing a pharmacophore
model. Thus, HypoGen not only identifies a query
compound as “active” or “inactive” in the traditional
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molecules needs to be covered extensively since the
bioactive conformations are unknown. Second, the
molecules need to be aligned by com- mon pharmacophore
features, which can be retained in a 3D model. Using
inactive derivatives, the essence of the features as well as
the permitted steric arrangement of the ligands can be
mapped as well. The Catalyst-HypoGen algorithm in
particular stands out from the variety of tools available for
this purpose.62 This is a combination of QSAR and the
pharmacophore method. It attempts to correlate structure
and activity values (Ki or half maximal inhibitory
concentra- tion [IC50]) by constructing a pharmacophore
model. Thus, HypoGen not only identifies a query
compound as “active” or “inactive” in the traditional
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function of a pharmacophore model, but also predicts
activity value based on regression of the training dataset.
Protein and ligand structures are known:
In the third case, structural information is present for both
ligands and the receptor protein. Usually a pharmacophore
model represents the key features of a small molecule that
allow it to bind to some receptor molecule, but this idea can
be reversed and pharmacophore queries built from features
of a protein active site. These features describe the principle
interactions between the protein and its ligands, and can be
mapped onto the bioactive conformation of the ligand.
Ideally the structural model is derived from crystallographic
or nuclear magnetic resonance data, but homology models
or other structural data can be used as well. Although a
struc- ture for one ligand may be enough, it is beneficial to
have 3D information for multiple ligands to identify the
common interactions. While this approach is compatible
with the majority of pharmacophore modeling methods,
LigandScout is notable as the first software package able to
construct automatically a query from one or more Protein
Data Bank (PDB) files based on protein–ligand
interactions.64 Such structure-based pharmacophore
queries have mul- tiple applications. They can be used for
virtual screening, ligand binding pose prediction, and
comparison of binding sites.
Only the protein structure is known:
In the last case, structural information for the protein recep-
tor, but no active ligands, is known. In this case, a putative
pharmacophore model can be constructed by analyzing the
chemical properties of the binding site of interest. There are
several different computational approaches that can directly
convert 3D atomic structures of protein binding sites into
queries. The interaction maps of the de novo drug design
tool LUDI can be used to create a pharmacophore query.66
HS-Pharm is a knowledge-based method that uses machine-
learning algorithms to prioritize the most interest- ing
interacting atoms and to generate an interaction map within
the binding site.67 Subsequently, the interaction map is
converted into pharmacophore features. The GRID pack-
age is another approach to analyze the pocket in order to
identify the key interactions.68 Using molecular interaction
fields, the most favorable positions of atomic probes in the
binding site can be identified and converted into pharma-
cophore features.69 Although many successes have been
reported, the absence of any ligand structural information is
a distinct disadvantage to drug design, since in the absence
of a molecular scaffold it is hard to map the features in 3D
space which can still be covered by atoms that are
restrained by bond lengths and angles in the ligands.

Figure 4

Pharmacophore methods in docking simulations:
As indicated in the previous section, pharmacophore
models are very suitable as queries for virtual screening of
databases. Nevertheless, one of the more common
approaches in virtual screening is a so-called hierarchical
approach in which differ- ent methods are combined
consecutively. This is also known as the funnel principle,
where at each consecutive step the compounds most
unlikely to be active are removed, leav- ing the most
promising compounds for virtual screening.72 Typically,
every step of the hierarchical approach consists of a more
complex, computationally demanding step than the
previous one. As such, pharmacophore models are often
utilized as a filter to identify compounds that fulfill simple
geometric and chemical functionality requirements of the
query, prior to more complicated and computationally
demanding approaches such as molecular docking.

Molecular docking simulations are computational methods
that aim to predict the binding mode of a compound for a
given receptor as well as the quality of the interaction, often
by attempting to predict the affinity (free energy of binding)
using a scoring function.31 Often molecular docking
simula- tions are used to screen large datasets of
compounds for a given target, and compounds are ranked
according to their predicted affinity. Due to the high
number and diversity of the screening compounds, as well
as the knowledge that most of the screened compounds are
in fact probably inactive, the top scoring compounds are
most likely inactive and better compounds are ranked below
them. Although this ranking can still be better than random,
typically only a few compounds are selected from those
scoring best, and many of them often turn out to be
inactive. Several options are available for combining
docking- based virtual screening with pharmacophore-
based virtual screening:
 The database of ligands can be pre-filtered using a

pharmacophore query, prior to evaluation using dock-
ing simulations.

 The docking simulations can be post-filtered using a
phar- macophore query to remove any compounds
that fail to bind according to the pharmacophore
query. The method can also discard compounds that
would have scored well in a pure pharmacophore
search, but that fail to bind according to some
hypothesis taking more information into account, such
as incompatibility of the overall ligand structure with
the receptor site. In such a case, the ligands are
evaluated in absolute conformation and should not be
allowed to align with the pharmacophore features.

 Another alternative is to use the pharmacophore
alignment to guide the placement during the docking
simulations. The pharmacophore model can in this
case be used for the placement of the ligand, similarly
to the fitting of a molecule into the pharmacophore
query; or to guide the placement by using a constraint
while scoring the different docking poses. The
pharmacophore query could originate from a user-
defined query or an automatically generated receptor-
based pharmacophore query.
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scoring best, and many of them often turn out to be
inactive. Several options are available for combining
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 The docking simulations can be post-filtered using a
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that fail to bind according to the pharmacophore
query. The method can also discard compounds that
would have scored well in a pure pharmacophore
search, but that fail to bind according to some
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while scoring the different docking poses. The
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defined query or an automatically generated receptor-
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Pharmacophore models are very useful for enriching the top
scoring docking results with active compounds. This was
demonstrated in the recent SAMPL4 virtual screening
challenge where competitors were asked to rank a set of
compounds for a given target, HIV-1 Integrase, without any
Pharmacophore modeling in drug discovery knowledge of
activity of the compounds in the library.The top results
were obtained for the group using a hierarchical method
consisting of pharmacophore pre-filtering as well as
pharmacophore post-filtering of the docking results.
Future perspectives on pharmacophore modeling:
Pharmacophore modeling has been around since the begin-
ning of CADD and has evolved from a basic concept into a
well-established CADD method with applications including
similarity metrics, virtual screening, ligand optimization,
scaffold hopping, target identification, and so on. Given the
simplicity and versatility of the pharmacophore concept, it
can be anticipated that further developments will be made
in the future for different applications.
Fragment-based drug design:
Over the last two decades, fragment-based drug design has
become a well-established method for the rational
development of novel drugs.101 Rather than screening
drug-like molecules (with molecular weights of around 500
Da), smaller molecules with a molecular weight up to 350
Da (referred to as fragments) are being screened for affinity
with a receptor using highly sensitive biophysical methods.
Fragments showing some affinity for the target are grown
into bigger and more potent compounds, and frag- ments
binding to adjacent areas can be linked as well.
Since the diversity of small molecule fragments can easily
be sampled with a few hundred compounds, in silico
screening methods are highly suitable for fragment-based
design. CADD methods such as docking and
pharmacophore modeling have therefore also been used to
identify fragment- like compounds in silico prior to testing
in vitro; subsequent fragment recombination can be used for
the de novo design of inhibitors..
Protein–protein interaction (PPI) inhibition:
Although once thought to be undruggable, “high-hanging
fruits on the drug discovery tree,” PPIs have drawn a great
deal of attention in recent years.The undruggable image has
disappeared and an increasing number of small molecule
inhibitors of PPIs (SMPPII) have been reported. Most of the
early inhibitors originate from HTS.Structural analy- sis of
proteins in PPI complexes and inhibitor complexes show
that the interactions at the PPI interface are being mimicked
by the ligand. SMPPII are found to copy the natural
interaction not only in terms of shape and chemistry, but
even at the electrostatic potential level.This mimicry
suggests that the pharmacophore queries created from PPI
complex structures can be used to identify SMPPII via
virtual screening. Different methods can be employed to
map the pharmacophore features onto the amino acids
present at the PPI interface. Several SMPPII discoveries
have been achieved, thanks to pharmacophore searches
using manually created search features, or a consensus of
interactions at the PPI interface, or using automated
methods, or by identification of the key interactions using
molecular interaction field analysis.

PPIs are especially promising targets for controlling
inappropriate signaling, as found in diseases such as cancer.
The usefulness of pharmacophore modeling to create
queries encoding the key interactions at the PPI interface
will prob- ably strongly stimulate the discovery of novel
SMPPII using pharmacophores, both as a stand-alone
virtual screening tool and incorporated into pipelines with
other methods.
A potential role in protein design?
Although pharmacophore modeling originated as a drug
design concept and, as indicated earlier, is nowadays a key
element of CADD, pharmacophore modeling shows
promise in the currently burgeoning field of computational
protein design. Rather than designing drugs for a given
protein target, the aim in computational protein design is to
derive an amino acid sequence that will fold into a given
structure with a desired function. In many cases, this may
involve protein– small molecule ligand interactions, and for
these it can easily be imagined that pharmacophores may be
used simply by reversing the process of small molecule
drug design for a known protein structure.
First of all, suitable protein templates (enzymes or
otherwise) should be identified for the protein redesign
process. The ligand of interest could serve as a query to try
to identify possible binding proteins, which can then later
be redesigned to give optimum complementarity to the
ligand. Second, during the virtual protein design process,
often multiple rotamers of different amino acids are
sampled to identify the most desirable ones.119 Similar to
ligand fitting with a pharmacophore query, the protein side
chains can be fitted to features describing the
complementary interactions required at the protein–ligand
interface.

3. Phramcophore Identification
Introduction:
The concept of a pharmacophore is widely used in modern
drug design and it is generally defined as the 3D arrange-
ment of certain features in the ligand that are responsible
for its activity against a particular protein target. The
importance of the pharmacophore stems from the fact that
once it has been identified, it can be used to rationally de-
sign new ligands that contain it and thus have a greater
chance of producing the desired pharmacological effect.
The pharmacophore can be relatively easily identified if the
3D structure structure is available for several ligand bound
to the same binding site of the same the ligands and finding
their largest common arrangement, referred to as the
common pharmacophore (CP). The underlying assumption
behind such an approach is that the structurally conserved
characteristics of a set of active ligands are responsible for
their biological activity against the specific protein target.
However,the  number of ligands for which the 3Dstructure
has been determined representsavery small fraction of all
the binding data currently available. In most cases such as
inhigh-through put screening assays, the actual 3Dgeom-
etry of the binding conformation is not known and only the
activity is provided. In order to identify a common phar
macophore in a set of ligands for which exact 3D struc-
tures are not known, one can usually enumerate all possible
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low-energy conformations of all ligands, identify a potential
binding conformation for each ligand and then align those
binding conformations to find the largest com- mon
arrangement of features. However, the identification of the
binding conformation is not an easy task. It can be further
complicated by the fact that different ligands may have
different binding modes or bind to different sites of the
target.
Methods
Definitions and Notations:
Each labeled and undirected graph G is represented as a
tuple G = {V,E,L,L}, where V is a set of vertices or nodes,
E ⊆V ×V is a set of undirected edges ofG, L is a set of
disjoint vertex and edge labels, andL: V ∪E → L is a
function that maps the vertices and edges to their cor-
responding labels. A graph is represented by its|V|×|V|
adjacency matrix M in which each off-diagonal element
Mi,j contains the label of the edge (vi,vj) and each diago-
nal element Mi,i contains the label of the vertex vi, Two
graphs G1 = {V1,E1,L,L1} and G2 = {V2,E2,L,L2} are
considered isomorphic if |V1| = |V2|, |E1| = |E2| and there
exists a bijection f : V1 → V2 such that ∀v ∈ V1, L1(v) =
L2(f(v)) and ∀(v,u) ∈ E1, L1((v,u)) = L2((f(v), f(u))) (i.e.,
there is a one-to-one correspondence of the vertices and
edges between the two graphs). Graph G0 = {V0,E0} is
called a subgraph of G = {V,E}, denoted by G0 ⊆G, if V0⊆ V and E0 ⊆ E. If there exists a subgraph g0 of a graph G
that is isomorphic to a graph g, then g0 is called an
embedding of g in graph G. IfagraphG contains atleast one
embedding of a graph g, then g is said to be supported byG.
A clique is a fully connected graph, i.e., for each pair of
vertices in V there exist an edge in E. The size of a clique is
defined by the number of vertices it contains, i.e., |V|. A
clique with n vertices is called an n-clique. As a result, the
number of edges in the n-clique is n×(n−1)/2. For example,
Fig. 5 contains two graphs G1 and G2.

Figure 5

Canonical Representation of Cliques:
Almost all graphs can be represented in more than one way
depending on the order of vertices and edges in the
representative string. This fact can significantly reduce the
performance of most graph mining a lgorithms that will try
to find the embeddings of the same graph multiple times
due to multiple available representations. In order to avoid
such redundancy, one needs to use a canonical graph la-
beling. Canonical label is the unique code of a given graph.
The canonical code of a graph G (denoted by can (G))
should be the same regardless of its representa- tion as long
as the topological structure of the graph and its vertex and

edge labels remain the same. The canonical code that we
use is based on the mini- mum adjacency matrix code. This
code is constructed by taking an adjacency matrix and
rewriting it in one line by concatenating all its rows. The
minimum adjacency matrix code isthe lexicographically
minimum code among all possible adjacency matrix codes
for a given graph. This canonical code has a prefix
preservation prop-erty, i.e., for each graphG there exists a
subgraphGs ⊆G such that the canonical code of the Gs is a
prefix of the G’s canonical code. In this study, we used a
modified ver- sion of a minimum adjacency matrix code to
represent the cliques to have all node labels in the code be
in lexico- graphic order. The code is simply a string
consisting of node labels followed by the edge labels to
each preceding node in the clique in order. For example, the
clique rep- resented by graph G1 in Fig. 1 can have several
codes: ABaCba≺ ACbBaa≺ BAaCab≺ BCaAab≺
CAbBaa≺ CBaAba. However, since the code ABaCba
lexicographi- cally precedes all other codes, it is the
canonical code for that clique. Now, consider a clique
formed by vertices v2, v3, and v4 and the connecting edges
in graph G2 in Fig. 5. This clique can also be represented
by several codes, two ofwhich, viz. AAaCbc and
AAaCcb,have the same alpha- betical order of the
nodelabels. HoweversinceAAaCbc≺ AAaCcb,  the
AAaCbc is the canonical code for that clique.
Graph Representation of Conformations:
Each molecular conformation is represented as a graph,
where pharmacophore points are the vertices and edges are
the inter-point distances. From here on we will use the
terms pharmacophore points and vertices as well as inter-
point distances and edges interchangeably. For each graph
G = {V,E,L,L}, there are two sets of labels in L = LV ∪
LE: one for vertices (LV) and an- other one for edges (LE).
The labels of the vertices are used to capture the type of the
pharmacophore points and they are user-defined. In the
current study we used a total of six vertex labels
corresponding to the following types of pharmacophore
points: P (positive ionizable atom), N (negative ionizable
atom),A(hydrogen-bondacceptor),D (hydrogen-bond
donor), R (aromatic ring centroids), and H (hydrophobic).
The labels of the edges are used to capture the distance
between the pair of pharmacophore points associated with
the vertices. In our graph model, the actual distances are
discretized into a finite number of bins. Specifically, the
distance range between [dmin,dmax] is discretized into l
equal-size intervals with the corresponding labels 0,...,l−1.
Based on the actual distance between a pair of
pharmacophore points, each edge can be assigned up to two
labels. The first label corresponds to the bin that its distance
falls in. The second label is designed to maximize the
identification of common pharmacophores due to the above
distance binning. In particular, if the actual length of an
edge is withinδ(whereδ≤0.5)of the b insize from a bin
boundary, then the label corresponding to the adjacent left
or right bin is also assigned to that edge. The parameters
dmin,dmax, l, and δ are user-defined. Also, any distances
that fall outside the [dmin,dmax] range are ignored and they
are treated to represent vertices that are either too close to
actually represent different pharmacophore points
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use is based on the mini- mum adjacency matrix code. This
code is constructed by taking an adjacency matrix and
rewriting it in one line by concatenating all its rows. The
minimum adjacency matrix code isthe lexicographically
minimum code among all possible adjacency matrix codes
for a given graph. This canonical code has a prefix
preservation prop-erty, i.e., for each graphG there exists a
subgraphGs ⊆G such that the canonical code of the Gs is a
prefix of the G’s canonical code. In this study, we used a
modified ver- sion of a minimum adjacency matrix code to
represent the cliques to have all node labels in the code be
in lexico- graphic order. The code is simply a string
consisting of node labels followed by the edge labels to
each preceding node in the clique in order. For example, the
clique rep- resented by graph G1 in Fig. 1 can have several
codes: ABaCba≺ ACbBaa≺ BAaCab≺ BCaAab≺
CAbBaa≺ CBaAba. However, since the code ABaCba
lexicographi- cally precedes all other codes, it is the
canonical code for that clique. Now, consider a clique
formed by vertices v2, v3, and v4 and the connecting edges
in graph G2 in Fig. 5. This clique can also be represented
by several codes, two ofwhich, viz. AAaCbc and
AAaCcb,have the same alpha- betical order of the
nodelabels. HoweversinceAAaCbc≺ AAaCcb,  the
AAaCbc is the canonical code for that clique.
Graph Representation of Conformations:
Each molecular conformation is represented as a graph,
where pharmacophore points are the vertices and edges are
the inter-point distances. From here on we will use the
terms pharmacophore points and vertices as well as inter-
point distances and edges interchangeably. For each graph
G = {V,E,L,L}, there are two sets of labels in L = LV ∪
LE: one for vertices (LV) and an- other one for edges (LE).
The labels of the vertices are used to capture the type of the
pharmacophore points and they are user-defined. In the
current study we used a total of six vertex labels
corresponding to the following types of pharmacophore
points: P (positive ionizable atom), N (negative ionizable
atom),A(hydrogen-bondacceptor),D (hydrogen-bond
donor), R (aromatic ring centroids), and H (hydrophobic).
The labels of the edges are used to capture the distance
between the pair of pharmacophore points associated with
the vertices. In our graph model, the actual distances are
discretized into a finite number of bins. Specifically, the
distance range between [dmin,dmax] is discretized into l
equal-size intervals with the corresponding labels 0,...,l−1.
Based on the actual distance between a pair of
pharmacophore points, each edge can be assigned up to two
labels. The first label corresponds to the bin that its distance
falls in. The second label is designed to maximize the
identification of common pharmacophores due to the above
distance binning. In particular, if the actual length of an
edge is withinδ(whereδ≤0.5)of the b insize from a bin
boundary, then the label corresponding to the adjacent left
or right bin is also assigned to that edge. The parameters
dmin,dmax, l, and δ are user-defined. Also, any distances
that fall outside the [dmin,dmax] range are ignored and they
are treated to represent vertices that are either too close to
actually represent different pharmacophore points
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low-energy conformations of all ligands, identify a potential
binding conformation for each ligand and then align those
binding conformations to find the largest com- mon
arrangement of features. However, the identification of the
binding conformation is not an easy task. It can be further
complicated by the fact that different ligands may have
different binding modes or bind to different sites of the
target.
Methods
Definitions and Notations:
Each labeled and undirected graph G is represented as a
tuple G = {V,E,L,L}, where V is a set of vertices or nodes,
E ⊆V ×V is a set of undirected edges ofG, L is a set of
disjoint vertex and edge labels, andL: V ∪E → L is a
function that maps the vertices and edges to their cor-
responding labels. A graph is represented by its|V|×|V|
adjacency matrix M in which each off-diagonal element
Mi,j contains the label of the edge (vi,vj) and each diago-
nal element Mi,i contains the label of the vertex vi, Two
graphs G1 = {V1,E1,L,L1} and G2 = {V2,E2,L,L2} are
considered isomorphic if |V1| = |V2|, |E1| = |E2| and there
exists a bijection f : V1 → V2 such that ∀v ∈ V1, L1(v) =
L2(f(v)) and ∀(v,u) ∈ E1, L1((v,u)) = L2((f(v), f(u))) (i.e.,
there is a one-to-one correspondence of the vertices and
edges between the two graphs). Graph G0 = {V0,E0} is
called a subgraph of G = {V,E}, denoted by G0 ⊆G, if V0⊆ V and E0 ⊆ E. If there exists a subgraph g0 of a graph G
that is isomorphic to a graph g, then g0 is called an
embedding of g in graph G. IfagraphG contains atleast one
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clique with n vertices is called an n-clique. As a result, the
number of edges in the n-clique is n×(n−1)/2. For example,
Fig. 5 contains two graphs G1 and G2.

Figure 5
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points: P (positive ionizable atom), N (negative ionizable
atom),A(hydrogen-bondacceptor),D (hydrogen-bond
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The labels of the edges are used to capture the distance
between the pair of pharmacophore points associated with
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(e.g.,same atom was assigned more than one label) or they
are too far away to be meaningful pharmacophore points.
The multiple label assignment guarantees that all frequent
cliques in which the variation of the distances be- tween
any pairs of vertices does not exceed 2δ of the bin size will
be discovered even if the corresponding distances in
different molecules are assigned different labels. For
example, if the bin size l = 1Å and δ = 0.25, then all of the
distances differing by up to 2×δ×l = 0.5Å will be assigned
at least one common label. Selecting a smaller valueof δ
will decrease the run time but will only find very high-
quality (low RMSD values) pharmacophores; selecting a
larger value will find looser pharmacophores at the expense
of more computational requirement. For example, selecting
δ = 0.5 will always assign two labels to
everyedgeandthealgorithmwillbeguaranteedtofindall cliques
in which identical inter-point distances differ by no more
than the bin size l.
Problem Definition:
Let D = {G1,...,Gn} be a set of sets of graphs, one for each
of the active molecules{M1,...,Mn}. Each Gi is a set of
graphs {Gi1,...,Gimi} for each of the mi conformations of
the molecule Mi. For a given clique C, the
supportofacliqueintheDisdefinedas sup(C) = |M|,where
M⊆{M1,...,Mn}is a set of molecules that each have at least
one conformer graph G that supports C. Thus, provided the
above, the common pharmacophore identification problem
is defined as follows: Given D and the minimum support
fraction σ, find all cliques in D whose support is≥ σ•|D|.
Setting σ to 100% restricts the search to only
pharmacophores supported by all molecules. On the
otherhand,allowing σ to be less than100% allows to find
pharmacophores supported by only a portion of molecules
which is required in cases when multiple binding sites,
multiple binding modes or noisy data is a possibility.
Algorithms:
In this section we describe the two proposed algorithms for
common pharmacophore  identification using frequent
clique mining in the graphs representing low-energy con-
formations of the active molecules, or ligands. The MCM
algorithm is based on existing clique-mining methods and
mines the conformer graphs using a depth-first approach
and operating on edge-labeled graphs, and correctly deter-
mines the frequency of a common pharmacophore based on
is embeddings in the pharmacophore graphs of the various
ligands. The UCM algorithm improves the computational
complexity of MCM by capitalizing on the fact that there is
a high degree of structural similarity among the
3Dconformations of a molecule. Both algorithms produce
identical results and differ only in the execution time.

MCM-Multiple Conformer Minor Logorithm
UCM-Unified Conformer Minor Logorithm

The MCM algorithm described in this section uses a depth-
first approach to discover all frequent cliques.
Duringeachstep, it generates a new candidaten+1-cliqueby
growing the size of the current frequent n-clique via
addition of a single new vertex and n new edges. All added
edges are taken from the set of all frequent 2-cliques
generated at the beginning of the algorithm. The clique is

grown in such a way that the canonical code of the current
clique is a prefix of the candidate clique. The latter ensures
that the same clique is not enumerated multiple times. After
the candidate generation step, the clique is enumerated
(i.e.,the embedding so the clique are mined)and,if found
frequent, reported and used for further growth. MCM
algorithm uses a simple adjacency matrix M to store each
conformer separately for each molecule. When a two-bin
assignment is used, the two different labels (differing by 1)
corresponding to the distance between the same two
vertices are stored in Mi,j and Mj,i. If a single-bin
assignment is selected, then all off-diagonal elements in the
lower triangular matrix are assigned–1,i.e., ∀j < i : Mi,j =
−1. Sample adjacency matrices for conformers depicted in
Fig. 2 are presented in Fig. 3a (for visualization purposes,
the numeric edge labels were replaced with alphabetical
ones to avoid confusion with conformer IDs used by the
unified conformer matrix de- scribed in the following
section).

Figure 6

Pharmacophore model validation:
The main purpose of validating a quantitative model is to
determinewhether our model is able to identify active
structures and forecast their activity accurately. Therefore,
two validation procedures were followed namely, test set
prediction method and Cat-Scramble method.The
compounds were used as test set to validate the
pharmacophore model. The Cat-Scramble validation
procedure is based on Fischer’s randomization test. The
goal of this type of validation is to check whether there is a
strong correlation between the chemical structures and the
biological activity. This is done by randomizing the activity
data associated with the training set compounds, generating
pharmacophore hypotheses using the same features and
parameters to develop the original pharmacophore
hypothesis.
The statistical significance is calculated as following
formula:

Significance=100(1-1+x/y)

Where x is the total number of hypotheses having a total
cost lower than HypoX (original hypothesis), and y is the
total number of HypoGen runs (initial + random runs). Thus
19 random spreadsheets (or 19 HypoGen runs) have to be
generated for 95% confidence level. If the randomized data
set results in the generation of a pharmacophore with
similar or better cost values, RMSD, and correlation, then
the original hypothesis is considered to have been generated
by chance.
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in which identical inter-point distances differ by no more
than the bin size l.
Problem Definition:
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the molecule Mi. For a given clique C, the
supportofacliqueintheDisdefinedas sup(C) = |M|,where
M⊆{M1,...,Mn}is a set of molecules that each have at least
one conformer graph G that supports C. Thus, provided the
above, the common pharmacophore identification problem
is defined as follows: Given D and the minimum support
fraction σ, find all cliques in D whose support is≥ σ•|D|.
Setting σ to 100% restricts the search to only
pharmacophores supported by all molecules. On the
otherhand,allowing σ to be less than100% allows to find
pharmacophores supported by only a portion of molecules
which is required in cases when multiple binding sites,
multiple binding modes or noisy data is a possibility.
Algorithms:
In this section we describe the two proposed algorithms for
common pharmacophore  identification using frequent
clique mining in the graphs representing low-energy con-
formations of the active molecules, or ligands. The MCM
algorithm is based on existing clique-mining methods and
mines the conformer graphs using a depth-first approach
and operating on edge-labeled graphs, and correctly deter-
mines the frequency of a common pharmacophore based on
is embeddings in the pharmacophore graphs of the various
ligands. The UCM algorithm improves the computational
complexity of MCM by capitalizing on the fact that there is
a high degree of structural similarity among the
3Dconformations of a molecule. Both algorithms produce
identical results and differ only in the execution time.

MCM-Multiple Conformer Minor Logorithm
UCM-Unified Conformer Minor Logorithm

The MCM algorithm described in this section uses a depth-
first approach to discover all frequent cliques.
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growing the size of the current frequent n-clique via
addition of a single new vertex and n new edges. All added
edges are taken from the set of all frequent 2-cliques
generated at the beginning of the algorithm. The clique is

grown in such a way that the canonical code of the current
clique is a prefix of the candidate clique. The latter ensures
that the same clique is not enumerated multiple times. After
the candidate generation step, the clique is enumerated
(i.e.,the embedding so the clique are mined)and,if found
frequent, reported and used for further growth. MCM
algorithm uses a simple adjacency matrix M to store each
conformer separately for each molecule. When a two-bin
assignment is used, the two different labels (differing by 1)
corresponding to the distance between the same two
vertices are stored in Mi,j and Mj,i. If a single-bin
assignment is selected, then all off -diagonal elements in the
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strong correlation between the chemical structures and the
biological activity. This is done by randomizing the activity
data associated with the training set compounds, generating
pharmacophore hypotheses using the same features and
parameters to develop the original pharmacophore
hypothesis.
The statistical significance is calculated as following
formula:
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Where x is the total number of hypotheses having a total
cost lower than HypoX (original hypothesis), and y is the
total number of HypoGen runs (initial + random runs). Thus
19 random spreadsheets (or 19 HypoGen runs) have to be
generated for 95% confidence level. If the randomized data
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(e.g.,same atom was assigned more than one label) or they
are too far away to be meaningful pharmacophore points.
The multiple label assignment guarantees that all frequent
cliques in which the variation of the distances be- tween
any pairs of vertices does not exceed 2δ of the bin size will
be discovered even if the corresponding distances in
different molecules are assigned different labels. For
example, if the bin size l = 1Å and δ = 0.25, then all of the
distances differing by up to 2×δ×l = 0.5Å will be assigned
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of more computational requirement. For example, selecting
δ = 0.5 will always assign two labels to
everyedgeandthealgorithmwillbeguaranteedtofindall cliques
in which identical inter-point distances differ by no more
than the bin size l.
Problem Definition:
Let D = {G1,...,Gn} be a set of sets of graphs, one for each
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the molecule Mi. For a given clique C, the
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M⊆{M1,...,Mn}is a set of molecules that each have at least
one conformer graph G that supports C. Thus, provided the
above, the common pharmacophore identification problem
is defined as follows: Given D and the minimum support
fraction σ, find all cliques in D whose support is≥ σ•|D|.
Setting σ to 100% restricts the search to only
pharmacophores supported by all molecules. On the
otherhand,allowing σ to be less than100% allows to find
pharmacophores supported by only a portion of molecules
which is required in cases when multiple binding sites,
multiple binding modes or noisy data is a possibility.
Algorithms:
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is embeddings in the pharmacophore graphs of the various
ligands. The UCM algorithm improves the computational
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a high degree of structural similarity among the
3Dconformations of a molecule. Both algorithms produce
identical results and differ only in the execution time.
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compounds were used as test set to validate the
pharmacophore model. The Cat-Scramble validation
procedure is based on Fischer’s randomization test. The
goal of this type of validation is to check whether there is a
strong correlation between the chemical structures and the
biological activity. This is done by randomizing the activity
data associated with the training set compounds, generating
pharmacophore hypotheses using the same features and
parameters to develop the original pharmacophore
hypothesis.
The statistical significance is calculated as following
formula:

Significance=100(1-1+x/y)

Where x is the total number of hypotheses having a total
cost lower than HypoX (original hypothesis), and y is the
total number of HypoGen runs (initial + random runs). Thus
19 random spreadsheets (or 19 HypoGen runs) have to be
generated for 95% confidence level. If the randomized data
set results in the generation of a pharmacophore with
similar or better cost values, RMSD, and correlation, then
the original hypothesis is considered to have been generated
by chance.
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Database searching:
CATALYST generated best pharmacophore model
comprising of four chemical features was used as a query
for searching Maybridge chemical database consisting of
60,000 structurally diversifiedsmall molecules. Virtual
screening of such databases can serve two main purposes:
first, validating the quality of the generated pharmacophore
models by selective detection of compounds with known
inhibitory activity, and second, finding novel, potential
leads suitable for further development. Best flexible search
method was used for database searching to retrieve new
lead molecules.
Homology modeling:
BLAST(blastp) was employed to search the relevant target
or template proteins for building S.aureus MetRS protein
structure. ClustalW multiple sequence alignment method
was applied to compare the S. aureus MetRS sequence with
other bacterial MetRS. The MODELLER module in
INSIGHTII software was used to develop the homology
model. Sequence alignments were achieved by Align2d
method and the final 3D model was validated by
PROCHECK software [26].
Molecular docking:
The program GOLD 3 (Genetic Optimisation for Ligand
Docking) from Cambridge Crystallographic Data Center,
UK[27] uses genetic algorithm for docking flexible ligands
into protein binding sites to explore the full range of ligand
conformational flexibility with partial flexibility of the
protein. A pseudo atom was created at binding site region
of modeled S. aureus MetRS whose coordinates were taken
to define active site region with a active site radius of 8.0
A˚ . The annealing parameters of van der Waals and H-
bond interactions were considered within 4.0 and 2.5 A ˚ ,
respectively.

Figure 7

4. Conclusion
The pharmacophore concept was first put forward as a
useful picture of drug interactions almost a century ago, and
with the rise in computational power over the last few
decades, has become a well-established CADD method
with numer- ous different applications in drug discovery.
Depending on the prior knowledge of the system,
pharmacophores can be used to identify derivatives of
compounds, change the scaf- fold to new compounds with a
similar target, virtual screen for novel inhibitors, profile
compounds for ADME-tox, investigate possible off-targets,
or just complement other molecular methods. While there
are limitations to the pharmacophore concept, multiple

remedies are available at any time to counter them. Given
this versatility, it is expected that pharmacophore modeling
will maintain a dominant role in CADD for the foreseeable
future, and any medicinal chemist should be aware of its
benefits and possibilities.
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Database searching:
CATALYST generated best pharmacophore model
comprising of four chemical features was used as a query
for searching Maybridge chemical database consisting of
60,000 structurally diversifiedsmall molecules. Virtual
screening of such databases can serve two main purposes:
first, validating the quality of the generated pharmacophore
models by selective detection of compounds with known
inhibitory activity, and second, finding novel, potential
leads suitable for further development. Best flexible search
method was used for database searching to retrieve new
lead molecules.
Homology modeling:
BLAST(blastp) was employed to search the relevant target
or template proteins for building S.aureus MetRS protein
structure. ClustalW multiple sequence alignment method
was applied to compare the S. aureus MetRS sequence with
other bacterial MetRS. The MODELLER module in
INSIGHTII software was used to develop the homology
model. Sequence alignments were achieved by Align2d
method and the final 3D model was validated by
PROCHECK software [26].
Molecular docking:
The program GOLD 3 (Genetic Optimisation for Ligand
Docking) from Cambridge Crystallographic Data Center,
UK[27] uses genetic algorithm for docking flexible ligands
into protein binding sites to explore the full range of ligand
conformational flexibility with partial flexibility of the
protein. A pseudo atom was created at binding site region
of modeled S. aureus MetRS whose coordinates were taken
to define active site region with a active site radius of 8.0
A˚ . The annealing parameters of van der Waals and H-
bond interactions were considered within 4.0 and 2.5 A ˚ ,
respectively.
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4. Conclusion
The pharmacophore concept was first put forward as a
useful picture of drug interactions almost a century ago, and
with the rise in computational power over the last few
decades, has become a well-established CADD method
with numer- ous different applications in drug discovery.
Depending on the prior knowledge of the system,
pharmacophores can be used to identify derivatives of
compounds, change the scaf- fold to new compounds with a
similar target, virtual screen for novel inhibitors, profile
compounds for ADME-tox, investigate possible off-targets,
or just complement other molecular methods. While there
are limitations to the pharmacophore concept, multiple

remedies are available at any time to counter them. Given
this versatility, it is expected that pharmacophore modeling
will maintain a dominant role in CADD for the foreseeable
future, and any medicinal chemist should be aware of its
benefits and possibilities.
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