

Asian Journal of Medical and Pharmaceutical Sciences

ISSN: 2348-0165

Journal Home Page: www.pharmaresearchlibrary.com/ajmps

Development and In-vitro Assessement of Self Nano Emulsified Systems of Sertralline Hydrochloride

Vonteddu Sai Priya¹, Syed Noorunnisa³, Perli Lakshmi Haritha⁴, E. Vijay Kumar*⁵

^{1,2,3,4,5}Srinivasa Institute of Pharmaceutical Sciences, Proddatur, Andhra Pradesh, India

ABSTRACT

Enhancing the bioavailability of BCS class II drugs is a great deal for the formulators to exploit their therapeutic advantages. Many of the techniques had been developed to enhance the solubility which been the rate limiting step for the proper bioavailability. In this study the technique of micro emulsification had been used to reach the objective for the enhancement of solubility of Sertralline hydrochloride an oral Antipyschotic drug. The use of surfactants to reduce the interfacial tension between the water and oil phase was studied in this work.

Keywords: Nano emulsions, SNEDDS, SMEDDS

ARTICLE INFO

*Corresponding Author

E. Vijay Kumar

Srinivasa Institute of Pharmaceutical Sciences,

Proddatur, Andhra Pradesh, India

ARTICLE HISTORY: Received 18 Oct 2022, Accepted 21 Nov 2022, Published Online 30 Dec 2022

©2022 Production and hosting by Asian Journal of Medical and Pharmaceutical Sciences, All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Citation: E. Vijay Kumar, et al. Development and In-vitro Assessement of Self Nano Emulsified Systems of Sertralline Hydrochloride. A. J. Med. Pharm, Sci., 2022, 10(1): 35-40.

${\tt CONTENTS}$

1. Introduction.	35
2. Methodology	
3. Results and Discussion.	
4. Conclusion	
5. References	

1. Introduction

Oral Drug Delivery System:

Significant advances have been made in drug delivery technologies throughout the past 3 decades, and drug delivery at a desired release rate is now possible. Even highly sophisticated drug delivery technologies often fail to produce marketable oral dosage forms, as a result of the physiological limitations of the gastrointestinal (GI) tract or the utilization of non-feasible pharmaceutical components. In oral drug delivery, there are many scientific challenges that could be studied for years to come, and breakthrough technologies are required to generate novel dosage forms

raising drug delivery to higher level. Oral route is the most convenient and easiest route for non-invasive administration Poor water solubility is widely recognized as the main reason for the poor oral absorption of many new chemical entities. Conventional solubilisation approaches such as co-solvents, salt formation and more recently surfactant-based micellar formation are now widely employed in enhancing the oral absorption of drugs, primarily poorly soluble drugs.

The drugs which are poorly water soluble will be inherently released at a slow rate owing to their limited solubility E. Vijay Kumar et al, A. J. Med. Pharm, Sci., 2022, 10(1): 35-40

within the GI contents. Hence, it shows incomplete and erratic absorption ultimately limits its clinical utility. Further, poorly soluble drugs are generally administered at much higher doses than the actual dose in order to achieve necessary drug plasma levels leading to increased adverse reaction & cost of therapy and often yields erratic pharmacological response limiting factor in their successful launch in market in spite of their potential pharmacokinetic activity.

2. Materials and methods

Drug Profile

Drug: Sertralline hydrochloride

Description: It is an antidepressant in a group of drugs

called SSRIS

Synonym: Sertralline hydrochloride (Zoloft)

Structure:

IUPAC name: (1s,cis)-4-(3,4-dichlorophenyl)-N-methyl -1-1,2,3,4- tetra Hydro napthaline -1-aminehydrochloride

BCS: Antidepressant (SSRI) **Chemical formula**: C₁₇ H₁₇ C₁₂ N **Molecular formula**: 306.229 g/mol **Watersolubility**: 3.8 mg/ml at 25 c **Melting point**: 243 – 2450 C

Log pH: 5.3 Half life: 22 – 36 hrs Cmax: 20-55 mg/ml Protein Binding: 98.55% Bio Excretion: Renal Availability: 44%

Figure 1

Table 1: Materials used for the study

Materials	Suppliers
Sertralline	Gift sample from
hydrochloride	AurobindoPharma, Hyd, India
Gingelly oil	Local market
Tween 20	S.D.FineChem .Ltd,Mumbai
Tween 80	S.D. Fine Chem. Ltd., Mumbai
Propylene Glycol	S.D. Fine Chem. Ltd., Mumbai

Table 2: Equipments used

Equipment	Manufacturer	Model No.
UV-Visible spectrophotometer	Agilent technologies	G11038
Dissolution Apparatus	Electro Lab	TDT-08L
FT-IR Spectrophotometer	Agilent technologies	IR 200
Zetasizer	Malvern Instruments Ltd	HAS 3000
SEM	Hitachi	S-3000N

3. Results and Discussion

Table 3: Standard plot for in Sertralline hydrochloride 0.1 N HCl and methanol

Concentration	Concentration Absorbance at 270 nm	
(μg/ml)	0.1 N HCl	Methanol
2	0.186 ± 1.1	0.182 ± 1.3
4	0.313 ± 0.5	0.422 ± 0.4
6	0.439 ± 0.7	0.581 ± 0.9
8	0.577 ± 0.3	0.748 ± 1.4
10	0.748 ± 0.8	0.926 ± 0.7

All the values represented as mean± % RSD; n=6

E. Vijay Kumar et al, A. J. Med. Pharm, Sci., 2022, 10(1): 35-40

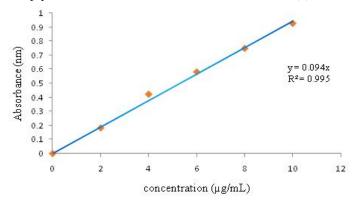


Figure 2: Calibration plot for Sertrlline hydrochloride in methanol

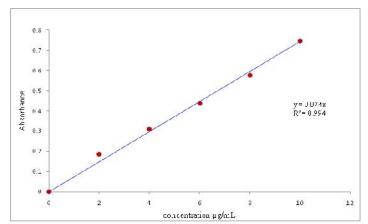


Figure 3: Calibration plot for Sertrlline hydrochloride in 0.1 N HCl

All the standard plots of Sertralline hydrochloride analysed at 270 nm in Beers limit of $2-10 \,\mu g/ml$, were found to be linear with correlation coefficients of 0.994 and 0.995 in 0.1 N HCl and methanol respectively.

Saturation solubility study:

Table 4: Solubility study of Sertralline hydrochloride in various oils

Type of component	Solubility (mg/ml)
Oils	Sertralline hydrochloride
Canola oil	0.276±1.12
Gingelly oil	6.52±0.66
Isopropyl myristate	5.23±1.23
Oleic acid	5.07±0.44
Olive oil	1.62±1.23
Peanut oil	6.1±0.86
Rice bran oil	6.05 ± 0.41
Soya bean oil	3.45 ± 0.39
Sun flower oil	5.41±1.57
Surfactants	Sertralline hydrochloride
Tween 80	16.81±0.88
Tween 20	15.87±1.57
Span 80	12.01±1.23
Span 20	8.78±0.87
Co-surfactants	Sertralline hydrochloride
PEG 400	16.5±1.21

E. Vijay Kumar *et al*, *A. J. Med. Pharm*, *Sci.*, 2022, 10(1): 35-40 Propylene Glycol 21.9 ± 1.67 Ethanol 36.4 ± 0.29 Glycerin 19.7 ± 0.85

All the values represented as mean± % RSD; n=6

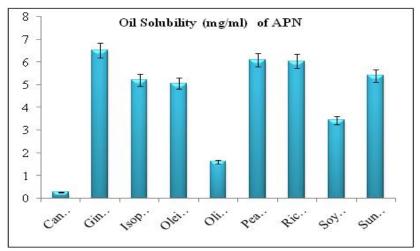


Figure 4: Solubility of Sertralline hydrochloride in oils

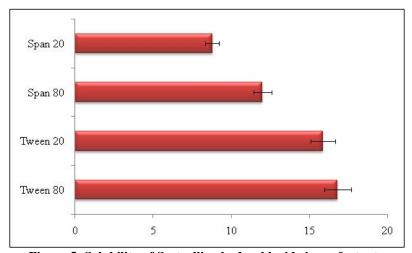


Figure 5: Solubility of Sertralline hydrochloride in surfactants

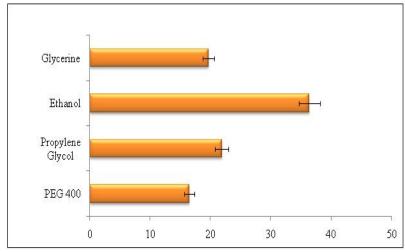


Figure 6: Solubility of Sertralline hydrochloride in co-surfactants Identification of the nano emulsification region

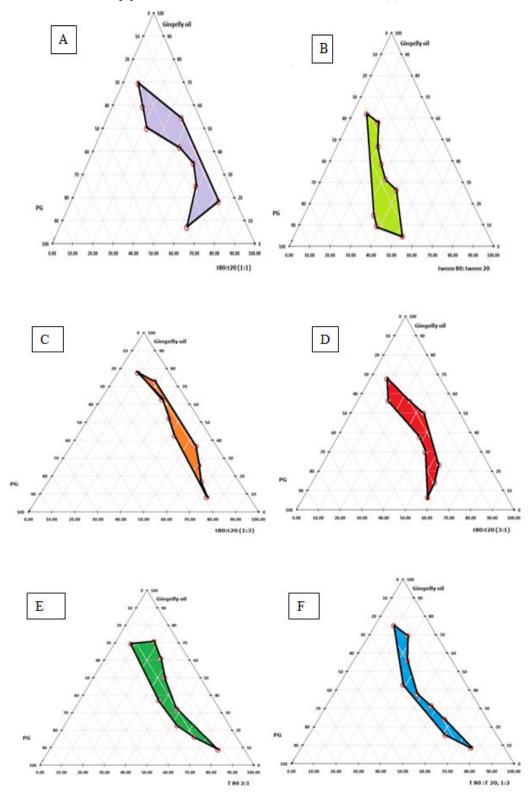


Figure 7: Ternary phase diagrams A-1:0, B-1:1, C-1:2, D-1:3, E-2:1, F-3:1

4. Conclusion

Solubility studies of sertralline hydrochloride were conducted in various oils and the emulsification region was identified from the pseudo ternary phase diagrams resulted from different ratios of surfactant and co-surfactant. Sertralline hydrochloride SNEDDS has been employed to

produce at various concentrations. The different formulation variables are surfactant and co-surfactant ratios and the composition of oil and aqueous phases. The prepared Nano-emulsions were characterized for viscosity, pH, globule size, zetapotential. The optimized formulations were evaluated for pH and viscosities found to be in the

same range without any deviation. The electro kinetic properties are reported with low zeta potential due the effect of surfactants, and the negative charge is imparted by oil. The size range of self-emulsion globules was confirmed by the zeta sizer analysis. It is concluded that the Sertrallne hydrochloride SNEDDS increase the bioavailability through enhancing the solubility by size reduction and also effective treatment for psychosis. Further the contribution of surfactant in combination and its effect, solidification of liquid SNEDDS using different methods and stability studies should be carried out.

5. References

- [1] Patel VR, Agrawal YK. Nanoemulsion: An approach to enhance solubility of drugs. Journal of advanced pharmaceutical technology & research. 2011 (2):81.
- [2] Bitterlich A, Laabs C, Krautstrunk I, Dengler M, Juhnke M, Grandeury A, Bunjes H, Kwade A. Process parameter dependent growth phenomena of naproxen nanoemulsion manufactured by wet media milling. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 92:171-179.
- [3] Yadollahi R, Vasilev K, Simovic S. Nanoemulsion technologies for delivery of poorly soluble drugs. Journal of Nanomaterials. 2015:1.
- [4] Krull SM, Ammirata J, Bawa S, Li M, Bilgili E, Davé RN. Critical material attributes of strip films loaded with poorly water-soluble drug nanoparticles: II. Impact of polymer molecular weight. Journal of pharmaceutical sciences. 2017; 106(2):619-628.
- [5] Wang D, Zhao X, Lin Y, Ren T, Liang J, Liu C, Wang L. Fabrication of micro/nano-structures by electrohydrodynamic jet technique. Frontiers of Mechanical Engineering. 2017;12(4):477-489.
- [6] Jassim ZE, Hussein AA. Formulation and Evaluation of. Clopidogrel tablet incorporating drug nanoparticles. IJPS. 2014:838-851.
- [7] Yadav GV, Singh SR. Nanosuspension: A promising drug delivery system. Pharmacophore. 2012;3(5):217-43
- [8] Grumezescu A, editor. Nanobiomaterials in cancer therapy: Applications of nanobiomaterials. William Andrew; 2016
- [9] Palo M, Kolakovic R, Laaksonen T, Määttänen A, Genina N, Salonen J, Peltonen J, Sandler N. Fabrication of drug-loaded edible carrier substrates from nanosuspensions by flexographic printing. International journal of pharmaceutics. 2015; 494(2): 603-610.