

Asian Journal of Chemical and Pharmaceutical Research

Journal Home Page: www.pharmaresearchlibrary.com/ajcpr

RESEARCH ARTICLE

Analytical Method Development and Validation for Lamivudine and Zidovudine Combine Pharmaceutical Dosage Forms by RP-HPLC

Dr. Gampa Vijay Kumar^{*1}, Dr. T. Rajesh², C. Mounika³

¹Professor and Head, Dept. of Pharmacy, KGR Institute of Technology and Management, Rampally, Kesara, Rangareddy, Telangana, India. ^{2,3}KGR Institute of Technology and Management, Rampally, Kesara, Rangareddy, Telangana, India.

ABSTRACT

A new method was established for simultaneous estimation of Lamivudine and Zidovudine by RP-HPLC method. The chromatographic conditions were successfully developed for the separation of Lamivudine and Zidovudine by using Agilent C18 column (4.6×150 mm)5µ, flow rate was 1ml/min, mobile phase ratio was (70:30 v/v) methanol:Acetonitrile, detection wavelength was 254 nm. The instrument used was Shimadzu, model No. SPD-20MA LC+20AD, Software- LC-20 Solution. The retention times were found to be 2.335 mins and 3.400 mins. The % purity of Lamivudine and Zidovudine was found to be 99.85% and 100.34% respectively. The system suitability parameters for Lamivudine and Zidovudine such as theoretical plates and tailing factor were found to be 2284, 1.7 and 2886 and 1.7, the resolution was found to be 5.4. The analytical method was validated according to ICH guidelines (ICH, Q2 (R1)). The linearity study of Lamivudine and Zidovudine was found in concentration range of 10µg-50µg and 20µg-100µg and correlation coefficient (r2) was found to be 0.999 and 0.999, % recovery was found to be 99.56% and 99.48%, %RSD for repeatability was 0.10 and 0.1, % RSD for intermediate precision was 0.4 and 0.3 respectively. The precision study was precision, robustness and repeatabilty.LOD value was 2.17 and 0.0372 and LOQ value was 6.60 and 0.1125 respectively.

Keywords: Agilent C18, Lamivudine and Zidovudine RP-HPLC

ARTICLE INFO

Corresponding Author Dr. Gampa Vijay Kumar Professor and Head, Dept. of Pharmacy, KGR Institute of Technology and Management, Rampally, Kesara, Rangareddy, Telangana, India. MS-ID: AJCPR3898

ARTICLE HISTORY: Received 19 March 2019, Accepted 21 April 2019, Available Online 12 May 2019

Copyright©2019 Dr. Gampa Vijay Kumar, et al. Production and hosting by Pharma Research Library. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Citation: Dr. Gampa Vijay Kumar, *et al.* Analytical Method Development and Validation for Lamivudine and Zidovudine Combine Pharmaceutical Dosage Forms by RP-HPLC. J. Pharm, Biomed. A. Lett., 2019, 7(1): 10-14.

CONTENTS

1. Introduction	11
2. Materials and Methods	.11
3. Results and Discussion.	12
4. Conclusion.	.14
5. References	.14

1. Introduction

Lamivudine, commonly called 3TC, is an antiretroviral medication used to prevent and treat HIV/AIDS. It is also used to treat chronic hepatitis B when other options are not possible. It is effective against both HIV-1 and HIV-2. It is typically used in combination with other antiretroviral such as zidovudine and abacavir.

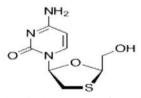


Fig 1:Chemical structure of Lamivudine

Zidovudine (ZDV), also known as azidothymidine (AZT), is an antiretroviral medication used to prevent and treat HIV/AIDS. It is generally recommended for use with other antiretrovirals.

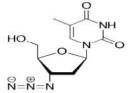
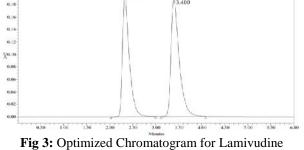


Fig 2:Chemical Structure of Zidovudine

2. Materials and Methods Instrumentation


HPLC Shimadzu, model No. SPD-20MA LC+20AD, Software- LC-20 Solution, U.V double beam spectrometer UV 3000+ U.V win software Lab India Digital weighing balance(sensitivity 5mg) pH meter Sonicator.

Materials:

Lamivudine and Zidovudine, Ortho phosphoric acid, KH₂PO₄, K₂HPO₄, Acetonitrile, Methanol, Water.

Chromatographic conditions

Column	:A	Agilent C18 column
(4.6×150mm)5µ		
Mobile phase ratio	:N	lethanol: ACN (70: 30 % v/v)
Detection wavelength	:	254 nm
Flow rate	:	1.0ml/min
Injection volume	:	10µ1
Column temperature	:	Ambient
Auto sampler temperature	:	Ambient
Run time	:	10min
Retention time	:	2.335 & 3.400 mins
6.20-	335	1
0.15		3.400
0.16		

and Zidovudine

Asian Journal of Chemical and Pharmaceutical Research

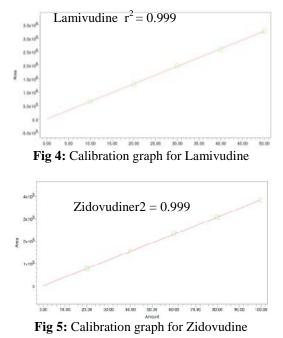
Preparation of the Lamivudine and Zidovudine standard and sample solution

Sample solution preparation:

An equivalent tablet power such that 10 mg of Lamivudine and 20 mg Zidovudine tablet powder were accurately weighed and transferred into a 10 ml clean dry volumetric flask, add about 2ml of diluent and sonicate to dissolve it completely and making volume up to the mark with the same solvent

Standard solution preparation:

10 mg Lamivudine and 20 mg Zidovudine working standard was accurately weighed and transferred into a 10ml clean dry volumetric flask and add about 2ml of diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.


Method Validation

Specificity:

The system suitability for specificity was carried out to determine whether there is any interference of any impurities in retention time of analytical peak. The specificity was performed by injecting blank.

Linearity:

10 mg of Lamivudine and 20 mg of Zidovudine working standard were accurately weighed and were transferred into a 10ml clean dry volumetric flask, add about 2ml of diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.

Range:

Based on precision, linearity and accuracy data it can be concluded that the assay method is precise, linear and accurate in the range of $10\mu g/ml$ - $50\mu g/ml$ and $20\mu g/ml$ - $100\mu g/ml$ of Lamivudine and Zidovudine respectively.

Accuracy:

10mg of Lamivudine and 20mg of Zidovudine working standard were accurately weighed and transferred into a

Dr. Gampa Vijay Kumar et al, AJCPR, 2019, 7(1): 10-14

10ml clean dry volumetric flask add about 2ml of diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.

Precision:

Repeatability:

Preparation of stock solution: 10 mg of Lamivudine and 20 mg of Zidovudine working standard were accurately weighed and transferred into a 10ml clean dry volumetric flask add about 2ml of diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.

Intermediate Precision/Ruggedness: To evaluate the intermediate precision (also known as ruggedness) of the method, precision was performed on different days by using different make column of same dimensions.

Limit of detection (LOD):

LOD's can be calculated based on the standard deviation of the response (SD)and the slope of the calibration curve (S) at levels approximating the LOD according to the formula. The standard deviation of the response can be determined based on the standard deviation of y-intercepts of regression lines.

Limit of quantification:

LOQ's can be calculated based on the standard deviation of the response (SD) and the slope of the calibration curve (S) according to the formula. Again, the standard deviation of the response can be determined based on the standard deviation of y-intercepts of regression lines.

Robustness:

As part of the robustness, deliberate change in the flow rate, mobile phase composition was made to evaluate the impact on the method.

System suitability:

10 mg of Lamivudine and 20 mg of Zidovudine working standard was accurately weighed and transferred into a 10ml clean dry volumetric flask and add about 2ml of diluent and sonicate to dissolve it completely and make volume up to the mark with the same solvent.

3. Results and discussion

Table 1: Assay results						
S.No	Name of compound	Amount taken	%purity			
1	Lamivudine	754.7	99.85			
2	Zidovudine	735.6	100.34			

Table 2.1 incority Desults for Laminuding

SI.No	Leniarity level	Concentration	Area
1	Ι	20 ppm	784928
2	II	40ppm	1524159
3	III	60ppm	2329360
4	IV	80ppm	3065982
5	V	100ppm	3830623
	0.999		

Table 3:Linearity Results for Zidovudine

SI.No	Leniarity level	Concentration	Area		
1	Ι	20 ppm	784928		
2	II	40ppm	1524159		
3	III	60ppm	2329360		
4	IV	80ppm	3065982		
5	V	100ppm	3830623		
	Correlation Coefficient				

Table 4:50% Accuracy results for Lamivudine and Zidovudine

Tuble 115070 Heedracy results for Earlie and Endovadine							
S.No	Lamivudine	ivudine	Zidovi	udine			
	RT	Area	RT	Area			
1	2.339	3062087	3.412	3574705			
2	2.338	3065063	3.412	3574166			
3	2.338	3070431	3.409	3583101			
Mean		3065860		3577324			
Std.Dev		4228.7		5009.9			
%RSD		0.14		0.14			

Table 5: 100% Accuracy results for Lamivudine and Zidovudine

S.No	Lami	vudine	Zidovudine	
5.10	RT	Area	RT	Area
1	2.338	3891186	3.415	4548377

Dr. Gampa Vijay Kumar et al, AJCPR, 2019, 7(1): 10–14

CODEN (USA): AJCPHP | ISSN: 2347-8322

2	2.338	3907240	3.422	4558118
3	2.337	3903606	3.421	4547232
Mean		3900678		4551243
Std.Dev		8418.1		5982.0
%RSD		0.22		0.13

Table 6:150% Accuracy results for Lamivudine and Zidovudine

S No	Lamivudine Zid		Zidov	udine
S.No	RT	Area	RT	Area
1	2.337	4868463	3.420	5670786
2	2.340	4871561	3.4229	5674632
3	2.339	4883949	3.424	5682709
Mean		4874658		5676042
Std.Dev		8194.6		6085.3
%RSD		0.17		0.11

Table 7: Accuracy results for Lamivudine

%Concentration	Average	Amount	Amount	%	Mean
(at specification level)	area	added (mg)	found (mg)	Recovery	recovery
50%	3065860	5	4.96	99.91%	
100%	3900678	10	9.98	99.18%	99.56%
150%	4874658	15	15.02	99.60%	

Table 8: Accuracy results for Zidovudine

%Concentration (at specification level)	Average area	Amount added (mg)	Amount found (mg)	% Recovery	Mean recovery
50%	3577324	0.5	0.99	99.53%	
100%	4551234	1.0	1.05	99.38%	99.47%
150%	5676042	1.5	1.495	99.52%	

Table 9:% RSD results for Lamivudine and Zidovudine

S No	Lam	ivudine	Zidovudine		
S.No	RT	Area	RT	Area	
1	2.335	1963566	3.408	2304558	
2	2.332	1964716	3.406	2299453	
3	2.333	1965030	3.409	2296908	
4	2.330	1960856	3.404	2295001	
5	2.331	1966445	3.407	2299613	
Mean		1964123		2299107	
Std.Dev		2094.9		3597.7	
%RSD		0.11		0.16	

Table 10:Intermediate precision results for Lamivudine and Zidovudine

S.No	Lamivudine		Zid	Zidovudine	
	RT	Area	RT	Area	
1	2.332	1984822	3.413	2316744	
2	2.331	1985152	3.409	2314478	
3	2.330	1985353	3.408	2314400	
4	2.332	1987338	3.412	2313639	
5	2.330	2004113	3.408	2332909	
Mean		1989356		2318434	
Std.Dev		28308.1		8174.5	
%RSD		0.42		0.35	

Table 11: System suitability results for Lamivudine and Zidovudine

Dung		System suitability results	
Drug	Flow rate (ml/min)	USP Plate Count	USP Tailing

CODEN (USA): AJCPHP | ISSN: 2347-8322

Lamivudine	0.8	2934	1.6
	1	2284	1.7
	1.2	2911	1.7
Zidovudine	0.8	2427	1.6
	1	2886	1.7
	1.2	2336	1.7

Duna	Change in organic composition	System suitability results	
Drug	in the mobile phase	USP Plate Count	USP Tailing
Lamivudine	5 % less	2866.1	1.7
	*Actual	2885	1.7
	5 % more	2711.2	1.7
	5 % less	2457	1.7
Zidovudine	*Actual	2451	1.6
	5 % more	2336.1	1.7

Table 12: Syst	em suitability	v results for	Lamivudine	and Zidovudine
	cm sunaomi	y results for	Lannvuunie	

4. Conclusion

A new method was established for simultaneous estimation of Lamivudine and Zidovudine by RP-HPLC method. The chromatographic conditions were successfully developed for the separation of Lamivudine and Zidovudine by using Agilent C18 column (4.6×150mm)5µ, flow rate was 1ml/min, mobile phase ratio was (70:30 v/v)methanol: Acetonitrile, detection wavelength was 254 nm. The % purity of Lamivudine and Zidovudine was found to be 99.85 % and 100.34% respectively. The system suitability parameters for Lamivudine and Zidovudine such as theoretical plates and tailing factor were found to be 2284, 1.7 and 2886 and 1.7, the resolution was found to be 5.4. The analytical method was validated according to ICH guidelines (ICH, Q2 (R1)). The linearity study of Lamivudine and Zidovudine was found in concentration range of 10µg-50µg and 20µg-100µg and correlation coefficient (r2) was found to be 0.999 and 0.999, % recovery was found to be 99.56% and 99.48%, %RSD for repeatability was 0.10 and 0.1, % RSD for intermediate precision was 0.4 and 0.3 respectively. The precision study was precision, robustness and repeatabilty.LOD value was 2.17 and 0.0372 and LOQ value was 6.60 and 0.1125 respectively.

5. References

- [1] Shaik Karishma , Shankar Subramaniam, Meenakshi Sundaram Muthuraman and Arvind Sivasubramanian et al, RP-HPLC Analytical Method Development And Validation For Lamivudine And Zidovudine In Pharmaceutical Dosage Forms. International Journal of PharmTech Research, 2013, 5(3), 1321-1331.
- [2] Palani Venkatesh,Mahesh Daggumati, Development and validation of a normal-phase HPTLC method for the simultaneous analysis of Lamivudine and Zidovudine in fixed-dose combination tablets. Journal of Pharmaceutical Analysis, 2012,2(2),152–155.
- [3] T. Raja and A. Lakshmana Rao et al, Development and Validation of RP-HPLC Method for the Estimation of Abacavir, Lamivudine and

Zidovudine in Pharmaceutical Dosage Form. International Journal of PharmTech Research. 2011, 3(2), 852-857.

- [4] Manikanta Kumar A, B. Naga,Sandhya, Mahesh Nasare, V. V. L. N Prasad, Prakash V Diwan et al, Development and Validation of RP-HPLC method for simultaneous estimation of Lamivudine and Efavirenz in the Pharmaceutical Dosage Form. Journal of Advanced Pharmacy Education & Research, 2012, 2(4).
- [5] Yadavalli Rekha , Yellina Haribabu , Sheeja Velayudhankutty , Sosamma Cicy Eapen and Jane Mary, Method Development and Validation for the Simultaneous Estimation of Efavirenz, Lamivudine and Zidovudine through Stability indicating RPHPLC Method. Research Journal of Pharmaceutical Sciences, 2013, 2(4), 10-18.