

International Journal of Current Trends in Pharmaceutical Research

Journal Home Page: www.pharmaresearchlibrary.com/ijctpr

Research Article

Open Access

A Prospective Phyto Chemical and *In-vitro* Antioxidant Screening of Leaves of *Pongamia Pinnata*

A. Bhavana*, J. Nagalaxmi, M. Prasanna Teja, M. Venkateswarao, Ch. V. Suresh

Mother Teresa Pharmacy College, Sathupally, Khammam, Telangana-507303

ABSTRACT

Traditional system of medicine consists of large number of plants with various medicinal and pharmacological importances and hence represents a priceless tank of new bioactive molecules. *Pongamia pinnata Linn. Pierre* commonly known as 'Karanj' belonging to Fabaceae has been used in different system of traditional medicines for the treatment of various diseases. *Pongamia pinnata* leaves were collected and extraction was done by maceration process using ethanol as a solvent. Phytochemical investigation of extract was done and phytochemical tests for confirmation of the presence of alkaloids, tannins, flavonoids, steroids, glycosides, carbohydrates, aminoacids, proteins, fats & oils. *In-vitro* Antioxidant activity of the ethanolic extract of *Pongamia pinnata* was determined by hydrogen peroxide scavenging method. *Pongamia pinnata* had provided useful information for its identification. Leaves have alkaloids, flavonoids, tannins and saponins which have therapeutic value. Hydrogen peroxide is very important because of its ability to penetrate biological membranes. Hydrogen peroxide itself is not very reactive, but it can sometimes be toxic to the cell because it may give rise to hydroxyl radicals in the cells. Thus removing hydrogen peroxide is very important for the protection of living systems. Therefore the results indicate that *Pongamia pinnata* had strong hydrogen peroxide scavenging activity in dose dependent manner. Among all the concentrations 60µg/ml had shown the maximum activity.

Keywords: Pongamia pinnata, Phytochemical investigation, Hydrogen peroxide, Antioxidant activity.

ARTICLE INFO

CONTENTS

1.	Introduction	. 965
2.	Materials and Methods	966
3.	Results and discussion	.968
4.	Conclusion	.969
5.	References	. 970

Article History: Received 15 April 2015, Accepted 30 May 2015, Available Online 15 July 2015

*Corresponding Author A. Bhavana Mother Teresa Pharmacy College, Sathupally, Khammam, Telangana-507303 Manuscript ID: IJCTPR2548

Citation: A. Bhavana, et al. A Prospective Phyto Chemical and *In-vitro* Antioxidant Screening of Leaves of *Pongamia Pinnata*. Int. J. Curnt. Tren. Pharm, Res., 2015, 3(4): 964-970.

Copyright © **2015** A. Bhavana, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Pongamia pinnata (Linn.) Pierre is a medium sized glabrous tree popularly known as Karanja in Hindi, Indian Beech in English and Pongam in Tamil.¹ Most of the physicians of Indian system of traditional medicine Ayurveda and Siddha use Pongamia pinnata to treat various kinds of diseases including diabetes mellitus. It is a medicinal plant native to Western Ghats and chiefly found in tidal forests of India². Pongamia pinnata also called as Derris indica, is a monotypic genus and grows abundantly along the coasts and riverbanks in Myanmar. The tree is known for its multipurpose benefits and as a potential source of biodiesel³. The seeds are reported to contain on an average about 28- 34% oil with high percentage of polyunsaturated fatty acids. Historically, Pongamia has been used as folk medicinal plant, particularly in Ayurvedha and Siddha systems of Indian medicine. All parts of the plant have been used as a crude drug for the treatment of tumours, piles, skin diseases, itches, abscess, painful rheumatic joints wounds, ulcers, diarrhea etc.⁴ Besides, it is well known for its application as animal fodder, green manure, timber and fish poison. It has also been recognized to possess applications in agriculture and environmental management, with insecticidal and nematicidal activity. More recently, the effectiveness of P. pinnata as a source of biomedicines has been reported, specifically as antimicrobial and therapeutic agents. [5]

Pongamia pinnata is a medium sized semi evergreen glabrous tree with a short bole and spreading crown up to 18 m or more in height, bark grayish green or brown, very often mottled with dark brown dots, specks, lines or streak; leaves compound, leaflets 5-7 ovate, acuminate or elliptic; Flowers lilac or pinkish white, fragnant, in axillary racemes; fruits thick, woody, smooth, compressed, with a short curved beak, seeds 1 or 2 per pod, reniform to nearly round, smooth or wrinkled, testa reddish brown leathery. [6,7]

Taxonomy [8]:

Kingdom	-	Plantae
Subkingdom	-	Tracheobionta
Superdivision	-	Spermatophyta
Division	-	Magnoliophyta
Class	-	Magnoliopsida
Subclass	-	Rosidae
Order	-	Fabales
Family	-	Fabaceae
Genus	-	Pongamia
Species	-	Pinnata

Vernacular Names [9]:

Sanskrit	: Ghrtakarauja Karanjaka, Naktahva, Naktamala
Bengali	: Dahara karanja, Karanja, Natakaranja
Assamese	: Korach
Kannada	: Honge, Hulagilu
Marathi	: Karanja
Gujrati	: Kanaji, Kanajo
Punjabi	: Karanj
Telugu	: Ganuga, Kanugu

International Journal of Current Trends in Pharmaceutical Research

: Karuaini, Dithouri
: Karanja
: Pungai, Pongana
: Karanj
: Pungu, Ungu, Unu, Avittal

Figure 1: Pongamia pinnata tree

1.2 Traditional Uses: [10,11] 1.2.1. Seed oil

Applied to skin disease, in scabies, sores, herpes and the like cases of eczema have been benefited by applying a mixture of the oil and zinc oxide. Internally the oil has sometimes been used as stomachic and cholagogue in case of sluggish liver. Oil is styptic, anthelmintic, and good in leprosy, piles, ulcers, chronic fever and in liver pain. Useful in rheumatism arthritis scabies, whooping cough.

1.2.2. Leaves

Decoction of leaves is applied as bath or fomentation to rheumatic joints. Leaves are also used in diarrhea and in cough. Juice of leaves in treatment of flatulency, dyspepsia and diarrhea. Young leaves are applied to bleeding piles. Juice of leaves is used for cold, cough, diarrhea, dyspepsia, flatulence, gonorrhea, leprosy.

1.2.3. Stem

Juice of stem in remedy for Gonorrhoea. Aqueous extracts of stem bark exhibit significant CNS sedative and antipyretic activity.

1.2.4. Root

Juice in treatment of Gonorrhea, urethritis, good for cleaning foul ulcer, cleaning teeth, strengthening gums and gonorrhea. Juice of roots with coconut milk and lime water used for treatment of gonorrhea. Roots are bitter antihelmintic and used in vaginal and skin diseases. Juice of the root is used for cleansing foul ulcers and closing fistulous sores.

1.2.5. Seed

Pulp of seed is an application in leprosy. Commonly used in Bronchitis and whooping cough. Used for keloid tumors. Used in hypertension, skin ailments and rheumatic arthritis. Seed powder valued as a febrifuge, tonic and in bronchitis and whooping cough. Useful in inflammations, pectoral diseases, chronic fevers, hemorrhoids and anemia.

1.2.6. Bark: Useful internally in bleeding piles. It is anthelmintic and alexeteric and useful in hemorrhoids, beriberi, opthalmopathy, dermatopathy, vaginopathy and

A. Bhavana et al, IJCTPR, 2015, 3(4): 964–970

ulcer.For bleeding piles, for beriberi, reduce swelling of the spleen. Useful in mental disorder, cough and cold.

1.2.7. Flowers

Dried flowers in powder in combination with other ingredients is given as decoction in diabetes to quench thirst. Useful to quench dysepsia in diabetes, for bleeding piles.

1.2.8. Fruits

Fruits used for abdominal tumors. Useful in ailments of female genital tract, leprosy, tumors, piles, ulcers and upward moving of the wind in the abdomen. Seeds, leaves, roots and oil are Antiparasitic.

2. Materials and Methods

1.1. Collection of Plant:

Leaves of *Pongamia pinnata* were collected in the month of December 2014 from its natural habitat from nearby sathupally. The leaves were cleaned and dried under the shade to avoid degradation of volatile oil. The samples which were shade dried are powdered and stored in a container.

1.2. Preparation of extracts by maceration:

In this process 100 gm of leaf powder of *Pongamia pinnata* were weighed accurately then the drug was added with ethanol at an ratio of 1:3 allowed to stand at room temperature for a period of at least 3 days with frequent agitation with magnetic stirrer until the soluble matter has dissolved. The mixture then is strained. After that the extract was filtered and filtrate was poured into china dishes and air dried till it was dried completely to get dried residue. Then the dried residue was weighed and stored.[12] **Methods:**

- Phytochemical investigation of leaf extract
- Evaluation of Antioxidant activity

Phytochemical Investigation of Leaf Extract

Tab	le 1: Test for Carbo	hydrates
Test	Observation	Inference
Molish test:-	Violet ring is	Carbohydrates
Take 2-3ml of	formed at the	are present
aqueous extract	junction's of 2	
add few drops of	liquids	
-Naphthol		
Solution in		
alcohol shake		
and add		
Concentration		
H_2So_4 from		
sides of the test		
tube		
Fehlings test:-	Yellow colored	Reducing
Take 1ml of	Precipitate was	sugars are
Fehling A and	not observed	absent
B Solution was		
mixed and		
boiled for one		
minute add		
equal volume of		
test Solution		

International Journal of Current Trends in Pharmaceutical Research

Figure 2: Pongamia pinnata leaves

		1
heat in boiling		
water bath for 5-		
10min		
Benedicts test:-	Greenish yellow	Reducing
Equal volume of	or red color not	sugar's are
Benedicts	appeared	absent
reagent and test		
Solution in test		
tube were mixed		
heated in boiling		
water bath for		
5min		
Bar fords test:-	Red Precipitate	Mono
Equal volume of	is not observed	saccharine are
Bar ford's		absent
reagent and test		
Solution were		
added and		
heated for 1-		
2min in boiling		
water and		
cooled		

 Table 2: Test For Proteins

Test	Observation	Inference
Biuret test:	Violet/pink color	Protein's are
take 3ml test		present
Solution add 4%		
NaOH and few		
drops of 1%		
CuSo ₄ Solution		
Millon's test:	White Precipitate	Protein's are
Mix 3ml of test	warm the	present
Solution with	Precipitate is turn	
5ml of Millon's	to brick red	
reagent		
Xanthoprotein	White Precipitate	Protein's
test:	does not form's	containing
Mix 3ml test		tyrosine
Solution with		(or)tryptophan
1ml		is absent
concentration		
H_2So_4		
Mix 5ml test	On boiling	Proteins
Solution with	Solution turns	containing

A. Bhavana et al, IJCTPR, 2015, 3(4): 964–970

2ml 40% NaOH and 2drops of	black(or) brown due to formation	sulphurs are present
10% lead acetate Solution.		-

Table 3:	Test for	Aminoacids
I ubic 51	1050101	minoucius

Test	Observation	Inference
Ninhydrin's test:-	Purple	Amino acid is
Heat 3ml of test	(or)bluish	absent
Solution and 3	color does't	
drops 5%	appear	
Ninhydrin's		
Solution in boiling		
water bath for		
10min		
Melons test:	Dark red color	Tyrosine is
Heat 3ml of test	does't appear	absent
Solution and 3		
drops of melons		
reagent		
To 3ml of test	Reddish violet	Tryptophan is
Solution add few	ring at junction	absent
drops of glycoralic	of the two	
acid and	layer does't	
concentration	appear	
H_2So_4		
To 5ml of test	Black	Cysteine is
Solution add few	Precipitate of	absent
drops of 40%	lead sulphate	
NaOH and 10%	is not formed	
lead acetate		
Solution and boil		

Table 4: Test for Fats and Oils

Test	Observation	Inference
Place a thin section of	Oil, globules	Fat's and
drug on glass slide add	does't appear	oil's are
a drop of sudan red III	red	absent
reagent after 2 min		
wash with 50% alcohol		
mount in glycerin and		
observe under		
microscope		
To thin rection of drug	Oil drops does't	Fats and
add a drop of 1%	appear black	oils are
osmic acid after 1min		absent
observe under		
microscope		

Table 5: Test for Alkaloids

Test	Observation	Inference
Mayer's test:	Precipitate is	Alkaloids are
Mix 2-3ml of	formed	present
filtrate and add		
few drops of		
Mayer's reagent.		
Hager's test:	Precipitate is	Alkaloids are
Mix 2-3ml of	formed	present

International Journal of Current Trends in Pharmaceutical Research

filtrate with		
Hager's reagent.		
Wagner's	Yellow	Alkaloids are
test:Mix 2-3ml of	Precipitate is	present
filtrate and add	formed	
few drops of		
Wagner's reagent		

Table 6: Test for Steroids

Test	Observation	Inference
Salkowski	Chloroform layer	Steroids
reaction:	appears red and	are
To 2ml of extract	acid layer shows	present
add chloroform and	greenish yellow	
2ml of concentration	fluorescence	
H ₂ So ₄ shake well		
Liberman –	First red then	Steroids
burchard reaction:	blue and finally	are
Mix 2ml of extract	green	present
with chloroform add		
1-2ml of acetic		
anhydride and		
2drops		
concentration H ₂ So ₄		
from the side of test		
tube		
Liebermann's	Blue color was	Steroids
reaction:	appears	are
Mix 3ml extract		present
with 3ml acetic		
anhydride heat, cool		
and add few drops		
of		
$concentrationH_2So_4$		

Table 7: Test for Tannins and Phenolic Compounds

Test	Observation	Inference
To 2-3ml of aqueous	Deep	Tannins and
or alcoholic extract	blue/black	phenolic
add few drops of 5%	color	compounds are
Fecl ₃ Solution		present
To 2-3ml of aqueous	White	Tannins and
or alcoholic extract	Precipitate	phenolic
add few drops of		compounds are
lead acetate Solution		present
To 2-3ml of aqueous	Red color	Tannins and
or alcoholic extract	Solution	phenolic
add few drops of		compounds are
acetic acid Solution		present
To 2-3ml of aqueous	Reddish to	Tannins and
or alcoholic extract	yellow color	phenolic
add few drops of		compounds are
dil.HNO ₃		present

Table 8: Test for Flavanoids

Tuble of Test for The validities						
Test Observation Inference						
Pink color	Flavonoids are					
observed	present					
	Observation Pink color					

add 5ml		
95% ethanol few		
drops of		
concentration Hcl		
and 0.5 gr of		
magnesium		
turning		
To small quantity	Yellow colored	Flavonoids are
of residue add lead	Precipitate is	present
acetate solution	formed	
Addition of	Shows yellow	Flavonoids are
amount of sodium	coloration which	present
hydroxide to the	de coloration after	
residue	addition of acid	

 Table 9: Test for the Glycosides

Test	Observation	Inference
Baljets Test: In section of drug add sodium picrate Legal's test: To alcoholic extract add 1ml pyridine and 1ml sodium nitro prusside	Section shows yellow to orange color Pink to red color appears	Cardiac glycosides are present Cardiac glycosides are present
Kellar-killani test:To 2ml extract addglacial acetic acidone drop5% Fecl3and Concentration H_2So_4	Reddish brown color appears	Cardiac glycosides are present
Lieberman's test: To 3ml extract add 3ml acetic anhydrate heat and cool add few drops of concentration H_2So_4	Blue color appears	Cardiac glycosides are present
Brontagers's test: To 3ml extract add dil. H_2So_4 .boil and filter to cold filtrate add equivalent volume of benzene or chloroform shake well and separate the organic solvent and add ammonia	Ammonia layer turns to pink or red	Anthraquinone glycosides are present

3. Results and Discussion

3.1. Phytochemical investigation of *Pongamia pinnata* Extracts:

The plant extract i.e Ethanolic leaf extract were subjected for phytochemical investigation and the results are tabulate. The phytochemical investigation of leaf extract of

Sodium picrate test: Soak a filter paper strip first in 10% picric acid then in 10% sodium carbonate dry it in a conical flask place moistened powdered drug cock it place a blue filter paper strip in the slit in cork	The filter paper turns to brick red or maroon	Cyanogenetic glycosides are present	
--	--	---	--

Evaluation of Antioxidant activity: Hydrogen peroxide radical scavenging (H₂O₂) Assay [13, 14]

Hydrogen peroxide occurs naturally at low concentration levels in the air, water, human body, plants, microorganisms, food and beverages. It is widely used as a bleaching agent in the textile, paper and pulp industries. Human beings exposed to H_2O_2 indirectly via the environment are estimated as 0.28 mg/kg/day with intake from leaf crops contributing most to this exposure. Hydrogen peroxide enters the human body through inhalation of vapor or mist and through eye or skin contact. In the body, H_2O_2 is rapidly decomposed into oxygen and water and this may produce hydroxyl radicals (OH⁻) that can initiate lipid peroxidation and cause DNA damage.

The ability of plant extracts to scavenge hydrogen peroxide is determined according to the method of Ruch et al. (1989). [15] A solution of hydrogen peroxide (40 mm) is prepared in phosphate buffer (50mMpH 7.4). The concentration of hydrogen peroxide is determined by absorption at 230 nm using a spectrophotometer. Extract $(20 - 60 \ \mu g/ml)$ in distilled water is added to hydrogen peroxide and absorbance at 230 nm is determined after 10 min against a blank solution containing phosphate buffer without hydrogen peroxide [17].

The percentage of hydrogen peroxide scavenging is calculated as follows:

% Scavenged $(H_2O_2) = (A0 - A1 / A0) X100$.

Pongamia pinnata respectively passes the tests for carbohydrates, proteins, steroids, flavonoids, glycosides, alkaloids and Tannins but the amino acids and fats were absent.

Test	Reagents/test	Ethanolic leaf extract
Test for Carbohydrates	Molish test	+
	Fehling's test	-
	Benedict's test	-
Test for Proteins	Millon's test	+
	Xantho protein test	-
Test for Amino acids	Ninhydrin's test	-
	Millon's test	-
Test for Steroids	Salkowski test	+
Test for oils & Fats		-
Test for Flavonoids	Shinoda test	+
Test for Glycosides	Keller killani test	+
Test for Alkaloids	Dragondroff's test	+
	Mayer's test	+
Test for Tannins	5% FeCl ₃ &Lead	+
	acetate	

Table 10: Phytochemical Investigation

3.2. In-vitro Antioxidant Activity of Pongamia pinnata leaf Extract:

		Concentrations of Pongamia Pinnata				
S.NO	Control	ELE 20	ELE 30	ELE 40	ELE 50	ELE 60
1	0.70	0.48	0.45	0.35	0.32	0.28
2	0.68	0.49	0.45	0.34	0.32	0.28
3	0.69	0.49	0.45	0.35	0.31	0.26
4	0.70	0.48	0.43	0.35	0.32	0.24
Mean	0.69	0.49	0.45	0.35	0.32	0.27
CT-TEST		0.21	0.25	0.35	0.38	0.43
(A0-AT/A0)X100		29.96	35.74	49.82	54.15	61.73

Table 11: Antioxidant Activity of Pongamia pinnata

Control mean absorbance value is 0.69(A0)

The current study was performed on the model hydrogen peroxide scavenger activity, in this study we are compared the OH⁻ ions scavenger capacity of ethanolic extract, the extract was made into 20, 30,40,50,60 micro grams/ml

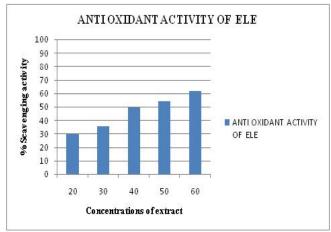


Figure 3: Antioxidant Activity of Pongamia pinnata

Discussion: The Phytochemical screening of present findings exhibited that the extract shown the presence of alkaloids, flavonoids, tannins and saponins which have therapeutic value. The extracts showed ascending inhibitory

International Journal of Current Trends in Pharmaceutical Research

concentrations, the activity of extract is observed under the UV Spectroscopy at 230nm, the obtained absorbance values are compared with control and the percentage inhibition was calculated according to the formula.

effect with respect to their concentrations. The effect was showed high in the 60 microgram/ml concentration in all the extracts, the percent inhibition of extracts is 61.73 respects to *Pongamia pinnata*. The results are shows comparable effects with the control. Concentration dependent protection of Antioxidant activity was seen with the ethanolic leaf extract. The higher concentration i.e 60 μ g/ml shown maximum percentage protection out of those all the concentrations the Leaf extract showed significant response with the standards. Thus the leaves have potent antioxidant activity.

4. Conclusion

In recent years of scientific investigations, attention has been drawn to the health promoting activity of plant foods and its active components. Many herbal remedies have been recommended in various medical treatises for the cure of different diseases. This plant is a multipurpose tree with immense medicinal and economic value. The present study on phytochemical evaluation of leaves *Pongamia pinnata* Linn of family Fabaceae had provided useful information for its identification. Leaves have alkaloids, flavonoids, tannins and saponins which have therapeutic value. The hydrogen peroxide scavenging activity was determined according to the method of HORAC assay. Hydrogen peroxide is very important because of its ability to penetrate biological membranes. Hydrogen peroxide itself is not very reactive, but it can sometimes be toxic to the cell because it may give rise to hydroxyl radicals in the cells. Thus removing hydrogen peroxide is very important for the protection of living systems. Therefore the results indicate that *Pongamia pinnata* had strong hydrogen peroxide scavenging activity in dose dependent manner. Among all the concentrations 60µg/ml had shown the maximum activity.

5. References

- 1. Krentz A.J. and Bailey C.J., Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs, **2005**, 65: 385-411.
- Gupta Y.K. and Briyal S., Animal models of cerebral ischemia for evaluation of drugs. Indian J Physiol Pharmacol. 2004, 48: 379–94.
- 3. Amadou C.K., Promoting alternative medicine. Africa Health J. **1998**, 2: 20-5.
- 4. Krishnamurthi A. **1969**. The Wealth of India, vol.VIII. Publication and Information Directorate CSIR, New Delhi, India.
- 5. Punitha R. and Manoharan S., Antihyperglycemic and antilipidperoxidative effects of *Pongamia*
- 6. *pinnata* (Linn.) *Pierre* flowers in alloxan induced diabetic rats. J Ethnopharmacol. **2006**, 105: 39–46.
- Naik M., Meher L.C., Naik S.N. and Dasa L.M., Production of biodieselfrom high free fatty acid Karanja (*Pongamia pinnata*) oil. Biomass and Bioenergy, **2008**, 32: 354–7.
- Sarma A.K., Konwer. D. and Bordoloi P.K., A comprehensive analysisof fuel properties of biodiesel from Koroch seed oil. Energy Fuels, 2005, 19, 656–7.
- Meera B., Kumar S., Kalidhar S.B., A review of the chemistry and biological activity of *Pongamia pinnata*. J Medicinal Aromatic Plant Sci, 2003, 25, 441–65.
- Shoba G.F. and Thomas M., Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhoea. J Ethnopharmacol, 2001, 76(1), 73–6.
- Brijesh S., Daswani P.G., Tetali P., Studies on *Pongamia pinnata* (L.) Pierre leaves: understanding the mechanism(s) of action in infectious diarrhea. J Zhejiang Univ Science B 2006, 7(8), 665–74.
- Chopade VV, Tankar AN, Pande VV, Tekade AR, Gowekar NM, Bhandari SR, Khandake SN. *Pongamia pinnata*: Phytochemical constituents, traditional uses and pharmacological properties: A review. *Int. J. Green. Pharm*, **2008**, 2: 72-5.
- 13. Duke, A Handbook of energy crops, unpublished. Available at: www.hort.purdue. edu; **1985**.

- 14. Scott, PT, Pregelj, Chen, N, Hadler, JS, Djordjevic, MJ and Gresshoff, PM., *Pongamia pinnata*: an untapped resource for the biofuels industry of the future. Bioenergy Research, **2008**, 1: 2-11.
- 15. Agroforestry Database: World Agroforestry Centre, *Pongamia pinnata*. Available at: www.worldagroforestrycentre.org
- Shameel S, Usmanghani K, Ali MS. Chemical constituents from seeds of Pongamia pinnata (L.) Pierre Park, J Pharm Sci, **1996**, 9: 11-20.
- Warrier P K, Nambiar VPK, Ramankutty C. Indian medicinal plants: a compendium of 500 species, volume 4. Orient Longman private Limited, Hyderabad, 1995, 339-344.
- 18. The Ayurvedic Pharmacopoeia of India, Vol-IIND, Part-I; 80-88.
- 19. Narayanrao UB, Indigenous Medicinal Specialities, Biotech Books, NewDelhi, **2001**, 30.