# International Journal of Chemistry and Pharmaceutical Sciences

Journal Home Page: www.pharmaresearchlibrary.com/ijcps

# **Review Article**

**Open Access** 

# Microsponges: An Approach to Novel Drug Delivery System-A Review

# Navneet Kumar Verma\*, Prabhudutta Panda, J. N. Mishra, D. K. Vishwakarma, Gulzar Alam, A.P. Singh

Department of Pharmacy, Kailash Institute of Pharmacy & Management, Uttar Pradesh, India

## ABSTRACT

Microsponges, the drug release technology has become more spirited and rapidly on the rise. Different drug delivery systems are being incorporated to optimize the efficiency and cost-effectiveness of the rehabilitation. In malevolence of presence of these technologies the drug delivery systems are unsuccessful to reach the systemic circulation in adequate amounts in control manner in few cases like Peptides and proteins. Conventional topical formulations have also many problems, such as producing a highly concentrated layer of active ingredient resulting irritation and allergic reactions etc. To control the delivery rate of active agents to a encoded site in human body has been one of the major challenges for drug industry. This review article focus on the Novel approaches to product formulation incorporating Microsponges technology may offers better entrapment of ingredients, reduced side effects, increased elegance, and enhanced formulation flexibility. **Keywords:** Microsponges, Drug delivery system, drug release technology, topical

**Reywords:** Microsponges, Drug denvery system, drug release technolog

# ARTICLE INFO

#### CONTENTS

| 1. | Introduction        |
|----|---------------------|
| 2. | Evaluation          |
| 3. | Advance Development |
| 4. | Conclusion          |
| 5. | References          |

Article History: Received 10 March 2015, Accepted 18 April 2015, Available Online 27 May 2015

\*Corresponding Author Navneet Kumar Verma Department of Pharmacy, Kailash Institute of Pharmacy & Management, Uttar Pradesh, India Manuscript ID: IJCPS2542



Citation: Navneet Kumar Verma, et al. Microsponge Drug Delivery: Approaches A Novel Drug Delivery System-A Review. Int. J. Chem, Pharm, Sci., 2015, 3(5): 1719-1725.

**Copyright**<sup>©</sup> **2015** Navneet Kumar Verma, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

ISSN: 2321-3132

# **1. Introduction**

To control the delivery rate of active ingredients to a predetermined site in human body has been one of the biggest challenges faced by drug industry. Several conventional and consistent systems were developed for systemic drugs under the heading of transdermal drug delivery system (TDDS) using the skin as portal of entry. It has improved the efficacy and safety of many drugs that may be better administered through skin. But TDS is not practical for delivery of materials whose final target is skin itself. Controlled release of drugs onto the epidermis with assurance that the drug remains primarily localized and does not enter the systemic circulation in significant amounts is an area of research that has only recently been addressed with success. No efficient vehicles have been developed for controlled and localized delivery of drugs into the stratum corneum and underlying skin layers and not beyond the epidermis. Application of topical drugs suffers many problems such as ointments, which are often aesthetically unappealing, greasiness, stickiness etc. that often results into lack of patient compliance. These vehicles require high concentrations of active agents for effective therapy because of their low efficiency of delivery system, resulting into irritation and allergic reactions in significant users. Other drawbacks of topical formulations are uncontrolled evaporation of active ingredient, unpleasant odour and potential incompatibility of drugs with the vehicles. Thus the need exists for system to maximize amount of time that an active ingredient is present either on skin surface or within the epidermis, while minimizing its transdermal penetration into the body. The microsponge delivery system fulfills these requirements. A Microsponge® Delivery System (MDS) is "Patented, highly cross-linked, porous, polymeric microspheres polymeric system consisting of porous microspheres that can entrap wide range of actives and then release them onto the skin over a time and in response to trigger"<sup>1</sup>. It is a unique technology for the controlled release of topical agents and consists of microporous beads, typically 10-25 microns in diameter, loaded with active agent. When applied to the skin, the MDS releases its active ingredient on a time mode and also in response to other stimuli (rubbing, temperature, pH, etc). MDS technology is being used in cosmetics, over-the-counter (OTC) skin care, sunscreens and prescription products. Delivery system comprised of a polymeric bead having network of pores with an active ingredient held within was developed to provide controlled release of the active ingredients whose final target is skin itself. The system was employed for the improvement of performance of topically applied drugs. The common method of formulation remains same; the incorporation of the active substance at its maximum thermodynamic activity in an optimized vehicle and the reduction of the resistance to the diffusion of the stratum corneum. Application Solubility enhancement Site specific action produced on the target organ Increase stability of drug Targeted drug delivery Controlled release drug delivery Topical drug delivery Oral drug delivery Bone tissue engineering Cardiovascular engineering

Reconstruction of vascular wall. Microsponges are porous, polymeric microspheres that can suspend or entrap a wide variety of active ingredients such as fragrances, essential oils, sunscreens, and anti-infective, anti-fungal, and antiinflammatory agents and can be incorporated into a formulated product such as a gel, cream, liquid or powder.<sup>2</sup>They are used mostly for topical use and have been recently used for oral administration. Microsponges are designed to deliver a pharmaceutical active ingredient efficiently at the minimum dose and also to enhance stability, reduce side effects, and modify drug release<sup>3</sup>. The microsponges technology was developed by Won in 1987, and applied to the cosmetic and OTC product. At the present time, this interesting technology has been licensed to Cardinal Health, Inc., for use in topical products. The size of the microsponges can be varied, usually from 5-300 µm in diameter having large pores as a reservoir within each microsponge<sup>4</sup>. Several systems have been developed for systemic drugs delivery such as microcapsules, microsphere and liposome etc, but they have some limitation such as microcapsules cannot usually control the release rate of the active drug once the wall is ruptured and liposome suffer from a lower pay load, difficult formulation, chemical stability, and microbial instability. Thus there is need of a system to maximize the amount of time that an active ingredient is present either on the skin surface or within the epidermis with minimizing its transdermal penetration into the body<sup>3</sup>. Microsponges have stability over a pH range of 1-11 and also stable up to temperature 130°C. Microsponges are microscopically spherical, free flowing, and better entrapment efficiency to reduced side effects, increased elegance, non-irritating etc. Currently microsponges are used in cosmetics, over-thecounter (OTC) skin care, sunscreens products. The detailed applications of microsponges and list of marketed products are enumerated in table no. 3 and table no. 4.

#### **Characteristics of Microsponge**

Microsponges formulations are stable over range of pH 1-11; Microsponge formulations are stable at temperature up to 130°C.Microsponge formulations are self-sterilizing as their average pore size 0.25µm where bacteria cannot penetrate. Microsponge formulation have higher payload (50-60%), still free flowing and can be cost effective. The Microsponge technology is a proprietary system of microparticles that can entrap a very wide range of pharmaceutical and cosmetic active ingredient to enhance their performance in topically applied dermatological products. This technology has been introduced in topical drug products to ensure the controlled release of active drug into the skin in order to reduce systemic availability and reduce local cutaneous reaction to active drug.

#### A Novel Drug Delivery System

The MDS has advantages over other technologies like microencapsulation and liposomes. Microcapsules cannot usually control the release rate of actives. Once the wall is ruptured the actives contained within microcapsules will be released. Liposomes suffer from lower payload, difficult formulation, limited chemical stability and microbial instability. While microsponge system in contrast to the above systems are stable over range of pH 1 to 11,

#### Navneet Kumar Verma et al, IJCPS, 2015, 3(5): 1719–1725

temperature up to 130oC; compatible with most vehicles and ingredients; self sterilizing as average pore size is 0.25µm where bacteria cannot penetrate; higher payload (50 to 60%), still free flowing and can be cost effective. Most liquid or soluble ingredients can be entrapped in the particles. Actives that can be entrapped in microsponges must meet following requirements:

- It should be either fully miscible in monomer or capable of being made miscible by addition of small amount of a water immiscible solvent.
- It should be water immiscible or at most only slightly soluble.
- It should be inert to monomers.
- It should be stable in contact with polymerization catalyst and conditions of polymerization.

#### Advantages:

- Controlled drug release
- Site specific action produce on target organ
- Enhanced drug stability
- High drug loading capacity Improve therapy
- Compatible with vehicle and ingredients
- Stable over the range of 1 -11 pH.
- Solution Free flowing and cost effective
- Improve thermal, physical, and chemical stability
- Flexibility to develop novel product forms

#### **Preparation Method of Microsponge:**

The active material should be water immiscible or at most only slightly soluble, inert to monomers (Table no.2). It should be also stable when in contact with the polymerization catalyst and under conditions of polymerization. The spherical structure of the microsponges should not collapse [5].

# **Polymerization Method:**

## 2. Evaluation

Evaluations of microsponges are carried out by various methods which are given in table no. 1.

The porous microspheres are prepared by suspension polymerization method in liquid-liquid systems. In their preparation, the monomers are first dissolved along with active ingredients in a suitable solvent and the solution of monomers is dispersed in the aqueous phase containing surfactant etc [6]. The polymerization is then initiated by adding catalyst or by increasing temperature or irradiation<sup>7</sup>.

## **Quasi-Emulsion Solvent Diffusion Method**

Microsponges were prepared by a quasi-emulsion solvent diffusion method using an external phase of containing distilled water and polyvinyl alcohol (PVA) 72000.The internal phase consists of drug, ethyl alcohol, polymer and triethyl citrate 20% of the polymer. At first, the internal phase was prepared at 60°C and added to the external phase at room temperature. After emulsification, the mixture was continuously stirred for 2 hours. Then the mixture was filtered to separate the microsponges. The product was washed and dried by vacuum oven at 40°C for 24 hours<sup>8</sup>.

- **Properties for the Entrapment into Microsponges** It should be either fully miscible in a monomer or capable of being made miscible by the addition of a small amount of a waterimmiscible solvent.
- It should be water immiscible or at most only slightly soluble.
- It should be inert to monomers and should not increase the viscosity of the mixture during formulation.
- It should be stable when in contact with the polymerization catalyst and under conditions of polymerization.
- The spherical structure of the microsponges should not collapse.

| Parameters                       | Methods                            |
|----------------------------------|------------------------------------|
| Particle size (Microscopy), size | Diffractometry[9]                  |
| distribution and polydispersity  |                                    |
| Morphology & surface             | Electron microscopy[10]            |
| topography                       |                                    |
| Density                          | Displacement method [11]           |
| Pore structure                   | Mercury intrusion porosimetry [11] |
| Drug polymer interaction         | FTIR [12]                          |
| Crystallinity                    | XRD studies [13]                   |
| Drug release study from topical  | Franz diffusion cell [14]          |
| Iormulation                      |                                    |

Tables Evolution of Misson on and

| <b>Hable 2:</b> Drug used in interosponge denvery system | Table 2: | Drug used | in | microsponge | delivery system |
|----------------------------------------------------------|----------|-----------|----|-------------|-----------------|
|----------------------------------------------------------|----------|-----------|----|-------------|-----------------|

| Drugs   | Polymer                                | Offering Benefits                        |
|---------|----------------------------------------|------------------------------------------|
| Mupicin | Ethyl cellulose and dichloromethane as | Enhanced retention in the skin           |
|         | a solvent which contained PVA as       | indicating better potential of the       |
|         | emulsifying agent                      | delivery system for treatment of primary |
|         |                                        | and secondary skin infections [15]       |

| Benzyl       | Ethyl cellulose and dichloromethane as  | Reduce the side effect by reducing        |
|--------------|-----------------------------------------|-------------------------------------------|
| Peroxide     | a solvent.Suspension polymerization of  | percutaneous absorption and control the   |
|              | styrene and methyl methacrylate         | release BPO to the skin.[16]              |
| Fluconazole  | liquid-liquid suspension polymerization | Reduce the side effect and controlled the |
|              | of styrene and methyl methacrylate      | release. [17]                             |
| Flurbiprofen | Eudragit RS 100 and pore plugging of    | Microsponge system containing             |
|              | microsponges with pectin: HPMC          | flubiprofen was formulated for the        |
|              | mixture followed by tabletting          | colonic delivery of the drug for targeted |
|              |                                         | action.[18]                               |
| Dicyclomine  | Eudragit RS 100                         | System based on microsponges that         |
|              |                                         | would reduce the GI side effects of the   |
|              |                                         | drug. [19]                                |
| Hydroxyzine  | Eudragit RS-100 microsponges            | Controlled release of the drug from a     |
| HCl          |                                         | delivery system to the skin could reduce  |
|              |                                         | the side effects while reducing           |
|              |                                         | percutaneous absorption. [20]             |
| Diclofenac   | Xanthan gum-facilitated ethyl cellulose | At the lowest drug/polymer ratio could    |
| sodium       | microsponges                            | be useful for controlled release of       |
|              |                                         | Diclofenac sodium to the skin. [21]       |
|              |                                         |                                           |
| Paracetamol  | Eudragit S-100 based microsponges.      | Colonic delivery of the drug for targeted |
|              | tablets were prepared by compressing    | action. [22]                              |
|              | the microsponges followed by coating    |                                           |
|              | with pectin: hydroxyl propyl methyl     |                                           |
|              | cellulose (HPMC) mixture                |                                           |

#### **Application of Microsponge**

Microsponges are porous, polymeric microspheres that are used mostly for topical and recently for oral administration. It offers the formulation or a range of alternatives to develop drug and cosmetic products. Microsponges are designed to deliver a pharmaceutical active ingredient efficiently at the minimum dose and also to enhance stability, reduce side effects and modify drug release.

• Microcapsules cannot usually control the release rate of the active pharmaceutical ingredients (API).

| Once the wall is ruptured the API contained within |
|----------------------------------------------------|
| the microcapsules will be released.                |

- Pay load is up to 50 60%.
- Free flowing and cost effective.
- Microsponges are microscopic spheres capable of absorbing skin secretions, therefore, reducing oiliness and shine from the skin.

| Active agents                   | Applications                                 |
|---------------------------------|----------------------------------------------|
| Sunscreens                      | Improve efficacy & protection against        |
|                                 | sunburns and sun related injuries            |
| Anti-acne e.g. Benzoyl peroxide | Maintained efficacy with decreased skin      |
|                                 | irritation and sensitization                 |
| Anti-inflammatory e.g.          | Long lasting activity with reduction of skin |
| hydrocortisone                  | allergic response                            |
| Anti-fungal                     | Sustained release of actives                 |
| Anti-dandruffs e.g. zinc        | Reduced unpleasant odor with lowered         |
| pyrithione, selenium sulfide    | irritation with extended safety and efficacy |
| Rubefacients                    | Prolonged activity with reduced irritancy    |
| Skin depigmenting agents e.g.   | Improved stabilization against oxidation     |
| hydroquinone                    | with improved efficacy                       |

| Table 3: | Applications | of Microspor  | nge [23] |
|----------|--------------|---------------|----------|
| rabic 5. | Applications | of Milerospor | 1gc [25] |

| Table 4: List of marketed products [24] |                                                                    |  |  |
|-----------------------------------------|--------------------------------------------------------------------|--|--|
| Product name                            | Advantages                                                         |  |  |
| Retin-A-Micro <sup>TM</sup>             | 0.1 And 0.04% tretinoin entrapped in MDS, for topical treatment of |  |  |
|                                         | acne vulgaris.                                                     |  |  |
| Carac cream                             | Carac cream contains 0.5% fluorouracil, with 0.35% being           |  |  |
| 0.5%                                    | incorporated into a patented porous microsponge composed of        |  |  |

|                           | methyl methacrylate / glycol dimethacrylate cross-polymer and               |
|---------------------------|-----------------------------------------------------------------------------|
|                           | dimethicone.                                                                |
| Line eliminator           | Lightweight cream with a retinol (Vitamin A) in MDS, delivers               |
| dual retinol facial       | both immediate and time-released wrinkle-fighting action.                   |
| treatment                 |                                                                             |
| Retinol cream             | The retinol molecule is kept in the microsponge system to protect           |
|                           | the potency of vitamin A. This helps to maximize the retinol                |
|                           | dosage, while reducing the possibility of irritation. Retinol is a          |
|                           | topical vitamin A derivative, which helps maintain healthy skin,            |
|                           | hair, and mucous membranes.                                                 |
| Retinol 15 night          | A night time treatment cream with Microsponge system. The                   |
| cream                     | formula contain of pure retinol. Continuous use of Retinol 15 will          |
|                           | result in the visible diminishment of fine lines and wrinkles, and          |
|                           | improve in skin discolorations.                                             |
| EpiQuin micro             | The Microsponge® system entraps hydroquinone and retinol. The               |
|                           | microsponges release these ingredients into the skin gradually              |
|                           | throughout the day, which may minimize skin irritation                      |
| Sports cream RS           | Topical analgesic-anti-inflammatory and counterirritant actives in a        |
| and XS                    | Microsponge® Delivery System (MDS) for the management of                    |
|                           | musculoskeletal conditions                                                  |
| Salicylic peel 20         | Deep BHA peeling agent: Salicylic acid 20% and 30%,                         |
| and 30                    | Microsponge Technology, Excellent exfoliation and stimulation of            |
|                           | the skin for more resistant skin types or for faster results. Will          |
|                           | dramatically improve fine lines, pigmentation, and acne concerns.           |
| Micro peel plus           | The MicroPeel <sup>®</sup> Plus, stimulates cell turnover through the       |
|                           | application of salicylic acid in the form of microcrystals using            |
|                           | Microsponge® technology. The MicroPeel® Plus aggressively                   |
|                           | outperforms other superficial chemical peels by freeing the skin of         |
|                           | all dead cells, while doing no damage to the skin.                          |
| Lactrex <sup>TM</sup> 12% | It contains 12% lactic acid as the neutral ammonium salt and                |
| moisturizing              | ammonium lactate. Lactrex <sup>TM</sup> also contains water and glycerin, a |
| cream                     | natural humectant, to soften and help moisturize dry, flaky, cracked        |
|                           | skin                                                                        |
| Dermalogica oil           | It is a feather-light lotion, formulated with oil absorbing                 |
| control lotion            | Microsponge® technology and hydrating botanicals. The naturally             |
|                           | antiseptic skin response complex helps soothe and purify the skin.          |
| Ulta guard                | Microsponge system that contains dimethicone to help protect a              |
|                           | baby's skin from diaper rash                                                |

# 3. Advance Development

These drug delivery systems were originally developed for topical delivery of drugs. They can also be used for tissue engineering and controlled oral delivery of drugs using biodegradable polymers. It provides a wide range of formulating advantages. Liquids can be transformed into free flowing powders. Formulations can be developed with otherwise incompatible ingredients, with prolonged stability, without the use of preservatives. Therefore, microsponges will be an ideal drug delivery system related to formulations like the transdermal delivery system<sup>24</sup>. As we realize the nanosized particles have immense advantages like a very high surface area to size ratio and a greater potential to modulate the release of actives

# 4. Conclusion

This drug delivery system is a unique technology for the controlled release of macro porous beads, loaded with active agent, offering a potential reduction in side effects, compared to micro-sized particles. While inorganic nanosponges have many applications in electronics, the first pharmaceutical nanosponges based on cross linked cyclodextrins have been reported<sup>25</sup>.An interesting application of the microsponge technology could be in oral cosmetics, such as to sustain the release of volatile ingredients, thus increasing the duration of the 'fresh feel'. Microsponges of such volatile ingredients may be easily incorporated in tooth pastes or mouth washes and also colors entrapped in Microsponges may be used in a variety of colored cosmetic products such as rouge or lipsticks to make them long lasting [26].

while maintaining their therapeutic efficacy. The Microsponges drug delivery system offers entrapment of its ingredients. In addition, numerous studies have confirmed

that Microsponges systems are non-irritating, nonmutagenic, non-allergenic, and non-toxic. This technology is being used currently in cosmetics, over-the-counter skin care, sunscreens, and prescription products. This kind of drug delivery technology may lead to a better understanding

# 5. References

- 1. Kilicarslan M, Baykara T, The effect of the drug/polymer ratio on the properties of Verapamil HCl loaded microspheres,Int. J. Pharm, 252,2003, 99–109.
- Nacht S.; Kantz, M. The microsponge: A novel topical programmable delivery system. Top Drug Deliv Syst., 1992, 42, 299–325.
- 3. Kaity S,Maiti, S. Microsponges: A novel strategy for drug delivery system. Journal of Advanced Pharmaceutical Technology & Research., 2010, 1, 283-290.
- 4. Won R., Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen. US Patent No 4690825, 1987.
- Kawashima Y.; T, Niwa.; Takeuchi, H. Control of prolonged drug release and compression properties of ibuprofen microsponges with acrylic polymer, Eudragit RS, by changing their interparticle porosity. Chem. Pharm. Bull., 1992, 40, 196-201.
- 6. D'Souza JI,Masvekar, RR.; More, HN. Microspongic Delivery of Fluconazole for Topical Application, 1<sup>st</sup> Indo-Japanese International Conference on Advances in Pharmaceutical Research and Technology. Pharmaceutical Research and Technology, 2005, 25–9.
- PatelGeeta; JK, Patel. Use of a Microsponge in drug delivery Systems. Pharmaceutical processing., 2008, 158.
- Kawashima Y.; Iwamoto, T.; Niwa, T. Role of the solvent-diffusion rate modifier in a new emulsion solvent diffusion method for preparation of ketoprofen microspheres. Microencapsulation., 1993, 10, 329-340.
- 9. Martin A. Swarbrick, J.; Cammarrata, A. Physical Pharmacy: Physical Chemical Principles in Pharmaceutical Sciences, 1991, 3r<sup>d</sup> ed.; 527.
- 10. Emanuele AD.; Dinarvand, R. Preparation characterization and drug release from thermo responsive microspheres. Int. J, pharmaceutics, 1995,118, 237–42.
- 11. D'Souza JI. The Microsponge Drug Delivery System: For Delivering an Active Ingredient by Controlled Time Release. Pharmaoinfo net, 2008, 6,3.
- 12. Kawashima Y.; Niwa, T.; Takeuchi, H. Characterization of polymorphs of tranilast anhydrate and tranilast monohydrate when crystallized by two solvent change spherical crystallization techniques. J Pharm Sci., 1991, 81,472–478.

of the healing of several diseases. Hence, the microspongebased drug delivery technology is likely to become a valuable drug delivery matrix substance for various therapeutic applications in the future.

- 13. Bodmeier R., Chen, H.; Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen. J. Control Release, 1989, 10,167–75.
- 14. Franz TJ., Percutaneous absorption on the relevance of in vitro release rate. J Invest Dermatol, 1975, 45, 498–503.
- Bajaj A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10.
- WesterRC.; Patel, R.; Nacht, S.; Leydan, J. Controlled release of benzoyl peroxide from a porous microsphere polymeric system can reduce topical irritancy. J. Am. Acad. Dermatol.,1991 ,24,720-726.
- 17. D'SouzaMasvekar R. R, Pattekari P. P, Pudi S. R, More H N, Microspongic delivery of Fluconazole for topical application, 1-Indo japanis Conference, Mumbai, 2005.
- Tansel CA.; Omog, Lu. Preparation and in vitro evaluation of modified release ketoprofenmicrosponge. II Farmaco., 2003, 58,101-10.
- Jain V.; Sigh, R. Development and characterization of Eudragit RS 100 loaded microsponges and its colonic delivery using natural polysaccharides. Actapoloniaepharmaceutica-drug Research, 2010, 67,407-415.
- ZakiRizkalla, CM.; latif Aziz R.; Soliman II. In vitro and in vivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery., 2011, 12, 989-1001.
- 21. Maiti S.; Kaity, S.; Ray, S. Development and evaluation of xanthan gum-facilitated ethyl cellulose microsponges for controlled percutaneous delivery of diclofenacsodium., 2011,61, 257-70.
- Mishra MK.;Shikhri, Mukesh. Optimization, formulation development and characterization of Eudragit RS 100 loaded microsponges and subsequent colonic delivery. IJDDHR, 2011, 1, 8-13
- 23. Khopade AJ.; Jain, S.; Jain, NK. The microsponge: East Pharm., 1996, 39, 49–53.
- 24. Embil VP. OTC external analgesic cream/topical analgesic anti-inflammatory, counter irritant utilizing the Microsponge delivery system for controlled release of actives. UK Patent 01010586, 2000.

Navneet Kumar Verma et al, IJCPS, 2015, 3(5): 1719–1725

- 25. Cavalli R.; Tumiatii, W. et al. J. Inclusion phenomena and macro cyclic chemistry., 2006, 56, 209-213.
- 26. Adityapattani.;Sulbha A, Phadnis.; Vandana, B. Patravale. Microsponges: a path-breaking cosmetic innovation. Household and Personal Care Today, April 2008.