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ABSTRACT  

The MMP-13 inhibition activity of non-zinc-chelating compounds has been quantitatively analyzed in terms of 
chemometric descriptors. The statistically validated quantitative structure-activity relationship (QSAR) models 
provided rationales to explain the inhibition activity of these compounds. The descriptors, identified through 
combinatorial protocol in multiple linear regression (CP-MLR) analysis, have highlighted the role of 3-path Kier 
alpha-modified shape index (S3K), complementary information content index of 1-order neighborhood 
symmetry (CIC1), eigenvalue sum from mass weighted distance matrix (SEigm), lowest eigenvalue n. 6 of 
Burden matrix / weighted by atomic van der Waals volumes (BELv6) and by atomic polarizabilities (BELp6), 3-
order topological charge index (GGI3) and the functionality, R--CR--R (C-025). From statistically validated 
models, it appeared that the descriptors S3K, BELv6, BELp6 and SEigm make positive contribution to activity 
and their higher values are conducive in improving the MMP-13 inhibition activity of a compound. On the other 
hand, the descriptors CIC1, GGI3 and C-025 render detrimental effects to activity. Therefore, the absence of 
functionality, R--CR--R and lower values of descriptors CIC1 and GGI3 would be advantageous. PLS analysis 
has further corroborated the dominance of the CP‐MLR identified descriptors. Applicability domain analysis 
revealed that the suggested models have acceptable predictability. All the compounds are within the applicability 
domain of the proposed models and were evaluated correctly. 
 
Key words: QSAR, MMP-13 inhibitors, chemometric descriptors, combinatorial protocol in multiple linear 
regression (CP-MLR) analysis, non-Zn-chelating compounds.  
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INTRODUCTION 

The matrix metalloproteinases (MMPs), a family of more than 27 zinc- and calcium-containing enzymes, are 
involved in the degradation of extracellular matrix and tissue remodeling [1-3]. Of the collagenase family (MMP-1, 
MMP-8 and MMP-13) MMP-13, the most efficient type II collagen-degrading MMP [4,5], has now become an 
attractive therapeutic target because its inhibition reduces cartilage degradation associated with the progression of 
rheumatoid arthritis and osteoarthritis in animal models [6,7]. However, broad-spectrum MMP inhibitors exhibit a 
dose-limiting toxicity leading to side effects such as a painful joint stiffening (musculoskeletal syndrome, MSS) and 
inflammation [8-15]. It was suggested that MSS is caused by the inhibition of normal extracellular matrix turnover 
due to inhibition of other MMPs rather than MMP-13 [16-21]. At present, it is unclear which MMP isoforms may be 
involved [22] and to what extent they contribute to MSS. Thus, selective inhibition of MMP-13, devoid of MSS, 
may prove to be better therapeutic research area.  
 
MMPs having a tris(histidine)-bound zinc(II), acts as the catalytic site for the hydrolysis of substrate. Most MMP 
inhibitors achieve affinity through interaction with the catalytic zinc via a chelating moiety such as hydroxamic acid 
and by locating hydrophobic functionality in the S1′ pocket [8,28].  The S1′ pocket varies in length and amino acid 
sequence for different MMP isoforms. Such variations between MMP family members were, therefore, used to 
design MMP inhibitors with different selectivity profiles [23]. MMP-13 has additional region, S1′*, for inhibitor 
binding that has not been identified in other MMP isoforms.  Most potent and selective MMP-13 inhibitors occupy 
both the S1′ and S1′* pockets only [24-27] and reduces the need to have a Zn-binding functionality. 
 
In view of this, two new classes of potent and selective MMP-13 inhibitors involving unique binding mode at the 
active site and not interacting with the catalytic zinc, have recently been reported [28,29]. The general structure of 
these classes is shown in Figure 1. In the first series, the structural variations appeared at position R1 and in incision 
X while in the second series, positions R2 and R3 have been varied. These functional variations are given in Table 1.  
The first series of compounds (1-23) were obtained through optimization with the aid of co-crystal structural 
information [28]. For this, the hit compound (1) was extended out from the active site into the S1′ pocket by adding 
an aryl group through two different linking functionalities. The aryl ring occupies the entrance to the S1′ pocket thus 
providing the opportunity to grow into the S1′ pocket to improve the potency against MMP-13 and the selectivity 
profile against other MMP isoforms. Depending on the linkage different trends for potency and selectivity for the 
respective aryl groups were observed.  
 
To further improve potency against MMP-13, the second series (compounds 23-55) was explored to investigate 
alternative ways of interacting with the S1′ pocket [29]. The starting point of this optimization was the result of a 
hybridization of hit structure (compound 1) with another series of MMP-13 inhibitors based on an overlay of their 
crystal structures. In these analogues, the aryl groups was appended at the C-3 position of phenyl ring through a 
methyl amide linkage occupying the MMP S1′ pockets somewhat differently than the analogous functionality in first 
class of compounds. Additionally, the cyclohexyl group, able to bind in the S2′ pocket, was also replaced by other 
smaller substituents to modify the lipophilicity of some of the congeners.  
 
In both reported studies, the structure-activity relationships (SARs) were, however, targeted at the alteration of 
substituents at different positions and provided no rationale to reduce the trial-and-error factors. Hence, in the 
present communication a 2D-quantitative SAR (2D-QSAR) has been conducted to provide the rationale for drug-
design and to explore the possible mechanism of the action. In the congeneric series, where a relative study is being 
carried out, the 2D-descriptors may play important role in deriving the significant correlations with biological 
activities of the compounds. The novelty and importance of a 2D-QSAR study is due to its simplicity for the 
calculations of different descriptors and their interpretation (in physical sense) to explain the inhibition actions of 
compounds at molecular level. 

 
MATERIAL AND METHODS 

2.1 Data-set 
For present work the non-Zn-chelating compounds (Table 1), along with their in vitro inhibition activity of MMP-
13, have been taken from the literature [28,29]. The inhibition activity, IC50, represents the concentration of a 
compound to achieve 50% inhibition of MMP-13 against type II collagen. The same is expressed as pIC50 on a 
molar basis and stand as the dependent descriptor for present quantitative analysis.  
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For modeling purpose, the complete data-set was divided into training- and test-sets. The training-set was used to 
derive statistical significant models while the test-set, consisting nearly 25% of total compounds, was employed to 
validate such models. The selection of test-set compounds was made through SYSTAT [30] using the single linkage 
hierarchical cluster procedure involving the Euclidean distances of the inhibition activity, pIC50 values. The test-set 
compounds were selected from the generated cluster tree in such a way to keep them at a maximum possible 
distance from each other. In SYSTAT, by default, the normalized Euclidean distances are computed to join the 
objects of cluster. The normalized distances are root mean-squared distances. The single linkage uses distance 
between two closest members in clustering. It generates long clusters and provides scope to choose objects at 
intervals. Due to this reason, a single linkage clustering procedure was applied.  
 
2.2 Molecular descriptors 
The structures of the compounds (Table 1), under study, have been drawn in 2D ChemDraw [31] using the standard 
procedure. These structures were converted into 3D objects using the default conversion procedure implemented in 
the CS Chem3D Ultra. The generated 3D-structures of the compounds were subjected to energy minimization in the 
MOPAC module, using the AM1 procedure for closed shell systems, implemented in the CS Chem3D Ultra. This 
will ensure a well defined conformer relationship across the compounds of the study. All these energy minimized 
structures of respective compounds have been ported to DRAGON software [32] for computing the descriptors 
corresponding to 0D-, 1D-, and 2D-classes. The combinatorial protocol in multiple linear regression (CP‐MLR) [33] 
analysis and partial least‐squares (PLS) [34‐36] procedures have been used in the present work for developing 
QSAR models. A brief description of the computational procedure is given below. 
 
2.3 Model development 
The CP-MLR is a ‘filter’-based variable selection procedure for model development in QSAR studies [33]. Its 
procedural aspects and implementation are discussed in some of our recent publications [37-42]. The thrust of this 
procedure is in its embedded ‘filters’. They are briefly as follows: filter-1 seeds the variables by way of limiting 
inter-parameter correlations to predefined level (upper limit ≤ 0.79); filter-2 controls the variables entry to a 
regression equation through t-values of coefficients (threshold value ≥ 2.0); filter-3 provides comparability of 
equations with different number of variables in terms of square root of adjusted multiple correlation coefficient of 
regression equation, r-bar; filter-4 estimates the consistency of the equation in terms of cross-validated r2 or q2 with 
leave-one-out (LOO) cross-validation as default option (threshold value 0.3 ≤ q2 ≤ 1.0). All these filters make the 
variable selection process efficient and lead to a unique solution. In order to collect the descriptors with higher 
information content and explanatory power, the threshold of filter-3 was successively incremented with increasing 
number of descriptors (per equation) by considering the r-bar value of the preceding optimum model as the new 
threshold for next generation. Furthermore, in order to discover any chance correlations associated with the models 
recognized in CP-MLR, each cross-validated model has been put to a randomization test [43,44] by repeated 
randomization of the activity to ascertain the chance correlations, if any, associated with them. For this, every model 
has been subjected to 100 simulation runs with scrambled activity. The scrambled activity models with regression 
statistics better than or equal to that of the original activity model have been counted, to express the percent chance 
correlation of the model under scrutiny. 
 
To support the findings, a partial least squares (PLS) analysis has been carried out on descriptors identified through 
CP-MLR.  The study facilitates the development of a ‘single window’ structure‐activity model and help to 
categorize the potentiality of identified descriptors in explaining the MMP-13 inhibition activity profiles of the 
compounds. It also gives an opportunity to make a comparison of the relative significance among the descriptors. 
The fraction contributions obtainable from the normalized regression coefficients of the descriptors allow this 
comparison within the modeled activity. 
 
2.4 Applicability Domain 
The utility of a QSAR model is based on its accurate prediction ability for new compounds. A model is valid only 
within its training domain and new compounds must be assessed as belonging to the domain before the model is 
applied. The applicability domain is assessed by the leverage values for each compound [45,46]. The Williams plot 
(the plot of standardized residuals versus leverage values, h) can then be used for an immediate and simple graphical 
detection of both the response outliers (Y outliers) and structurally influential chemicals (X outliers) in the model. In 
this plot, the applicability domain is established inside a squared area within ± x (s.d.) and a leverage threshold h*. 
The threshold h* is generally fixed at 3(k + 1)/n (n is the number of training-set compounds and k is the number of 
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model parameters) whereas x = 2 or 3. Prediction must be considered unreliable for compounds with a high leverage 
value (h > h*). On the other hand, when the leverage value of a compound is lower than the threshold value, the 
probability of accordance between predicted and observed values is as high as that for the training-set compounds. 
 

RESULTS AND DISCUSSION 
 
3.1 QSAR results 
For the compounds in Table 1, a total number of 495 descriptors belonging to 0D- to 2D- classes of DRAGON have 
been computed and were subjected to CP-MLR analysis. The preliminary assessment of complete data-set suggested 
that the lone compound 25, having a methyl group at R2 remained as an ‘outlier’. Similarly compound 15, due to its 
uncertain activity value, could not fit into the trend of remaining compounds of the series. Both these compounds 
were, therefore, ignored in the subsequent analyses. The remaining 53 compounds were further divided into 
training-set and test-set.  
 
Thirteen compounds (nearly 25% of total population) have been selected for test-set through SYSTAT. The 
identified test-set was then used for external validation of models derived from remaining forty compounds in the 
training-set. The squared correlation coefficient between the observed and predicted values of compounds from test-
set, r2Test, was calculated to explain the fraction of explained variance in the test-set which is not part of 
regression/model derivation. It is a measure of goodness of the derived model equation. A high r2

Test value is always 
good. But considering the stringency of test-set procedures, often r2

Test values in the range of 0.500–0.600 are 
regarded as indicative predictive models. Following the strategy to explore only predictive models, CP-MLR 
resulted into 70 models in two descriptors, 99 models in three descriptors, 8 models in four descriptors and 13 
models in five descriptors. However, the highest significant of them, in statistical sense, are given through Equations 
(1)-(10) 
 
pIC50 = 5.983 + 2.242(0.324)S3K + 0.874(0.228)nRORPh 
n = 40, r = 0.764, s = 0.525, F = 25.915, q2

LOO = 0.505, q2L5O = 0.511, r2Test = 0.634             (1) 
 
pIC50 = 6.230 + 1.434(0.417)VAR + 1.141(0.241)N-075 
n = 40, r = 0.736, s = 0.551, F = 21.870, q2

LOO = 0.470, q2L5O = 0.474, r2Test = 0.670             (2) 
 
pIC50 = 6.598 + 3.470(0.415)S3K – 1.183(0.432)GGI3 – 1.541(0.323)C-025 
n = 40, r = 0.846, s = 0.440, F = 30.112, q2

LOO = 0.629, q2L5O = 0.616, r2Test = 0.504             (3) 
 
pIC50 = 6.549 + 2.513(0.317)S3K – 1.745(0.327)C-025 + 0.556(0.260)C-027 
n = 40, r = 0.833, s = 0.456, F = 27.299, q2

LOO = 0.613, q2L5O = 0.615, r2Test = 0.553             (4) 
 
pIC50 = 5.617 + 2.491(0.533)SEigm + 2.703(0.433)BELv6 – 3.152(0.648)GGI3 
+ 0.779(0.232)N-075 
n = 40, r = 0.856, s = 0.432, F = 23.993, q2

LOO = 0.646, q2L5O = 0.652, r2Test = 0.751             (5) 
 
pIC50 = 7.052 + 1.354(0.518)S3K – 0.515(0.224)PJI2 + 1.521(0.510)C-006 
– 1.316(0.343)C-025 
n = 40, r = 0.854, s = 0.435, F = 23.665, q2

LOO = 0.644, q2L5O = 0.634, r2Test= 0.658              (6) 
 
pIC50 = 7.363 + 2.626(0.491)S3K – 1.629(0.553)CIC1 + 1.677(0.632)BELv6 
– 2.601(0.627)GGI3 – 0.967(0.356)C-025 
n = 40, r = 0.880, s = 0.404, F = 23.260, q2

LOO = 0.661, q2L5O = 0.648, r2Test= 0.652              (7) 
 
pIC50 = 7.358 + 2.591(0.504)S3K – 1.570(0.541)CIC1 + 1.602(0.614)BELp6 
– 2.528(0.612)GGI3 – 0.957(0.359)C-025 
n = 40, r = 0.879, s = 0.405, F =23.101, q2

LOO = 0.661, q2L5O = 0.675, r2Test = 0.675    (8) 
 
pIC50 = 6.140 + 2.230(0.654)S3K + 1.551(0.650)SEigm + 1.304(0.607)BELp6 
– 2.483(0.679)GGI3 – 1.102(0.359)C-025 
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n = 40, r = 0.870, s = 0.418, F = 21.176, q2
LOO = 0.639, q2L5O = 0.654, r2Test = 0.620             (9) 

 
pIC50 = 6.115 + 2.267(0.642)S3K + 1.576(0.660)SEigm + 1.332(0.622)BELv6 
– 2.520(0.693)GGI3 – 1.120(0.356)C-025 
n = 40, r = 0.870, s = 0.419, F = 21.161, q2

LOO = 0.637, q2L5O = 0.618, r2Test = 0.619           (10) 
 
Where n and F represent respectively the number of data points and the F-ratio between the variances of calculated 
and observed activities. The data within the parentheses are the standard errors associated with regression 
coefficients. In all above equations, the F-values remained significant at 99% level. The indices q2

LOO and q2L5O (> 
0.5), except baseline Equation (2), have accounted for their internal robustness. For all above models the r2Test 
values, obtained greater than 0.5, specified that the selected test-set is fully accountable for their external validation.  
The descriptors, in all above models, have been scaled between the intervals 0 to 1 [47] to ensure that a descriptor 
will not dominate simply because it has larger or smaller pre-scaled value compared to the other descriptors. In this 
way, the scaled descriptors would have equal potential to influence the QSAR models. 
 
The signs of the regression coefficients have indicated the direction of influence of explanatory variables in above 
models. The positive regression coefficient associated to a descriptor will augment the activity profile of a 
compound while the negative coefficient will cause detrimental effect to it. Though Equations (1)-(10) emerged as 
significant predictive models but Equations (7)-(10) remained statistically more efficient. The later four models, 
involving five descriptors in each, could estimate up to 77.44 percent of variance in observed activity of the 
compounds. In fact, a total number of 13 such models, sharing 15 descriptors among them, have been obtained 
through CP-MLR and only four of them, being most significant have been documented through Equation (7)-(10). 
The shared 15 descriptors along with their brief description, average regression coefficients and total incidences are 
given in Table 2. Besides listed descriptors in Table 2, the other identified descriptors PJI2 and VAR are from 
topological class, nRORPh is from functional class and C-027 is from atom centred fragment class. The PJI2 
represents the 2D Petitjean shape index (Equation 6), VAR explains  the variation in a molecular structure (Equation 
2), nRORPh accounts for the number of ethers (aromatic) (Equation 1) and C-027 encodes the functionality R--CH--
X (Equation 4).  
 
The further discussion is, however, based on the highest significant Equations (7)-(10). The derived statistical 
parameters of these four models have indicated that their level of significance is almost the same. These models 
were, therefore, used to calculate the activity profiles of all the compounds and are included in Table 3 for the sake 
of comparison with observed ones. A close agreement between them has been observed. Additionally, the graphical 
display, showing the variation of observed versus calculated activities is given in Figure 2 to insure the goodness of 
fit for each of these four models. 
 
The participated descriptors in these models are S3K, CIC1, SEigm, BELv6, BELp6, GGI3 and C-025. These 
descriptors represent, respectively, 3-path Kier alpha-modified shape index, complementary information content 
index of 1-order neighborhood symmetry, eigenvalue sum from mass weighted distance matrix, lowest eigenvalue n. 
6 of Burden matrix / weighted by atomic van der Waals volumes (v) and by atomic polarizabilities (p), 3-order 
topological charge index and the functionality, R--CR--R.  
 
The S3K encodes information about the centrality of branching in the H-depleted molecular graph. The CIC1 
measures the deviation of the information content pertaining to neighbourhood symmetry of 1-order (IC1) from its 
maximum value. The descriptor SEigm determines the sum of all the eigenvalues of atomic mass weighted distance 
matrix of the H-depleted molecular graph.  
 
From Equations (7)-(10), it appeared that the descriptors S3K, BELv6, BELp6 and SEigm make positive 
contribution to activity while the descriptors CIC1, GGI3 and C-025 render the negative role to it. Thus to explore 
more potential analogues of the series, the values of prevalent descriptors of a given model may be decided 
according to delineated strategy. For example, Equation (7) has revealed that the higher values of descriptors S3K 
and BELv6, the lower (or more negative) value of descriptor CIC1 and absence of functionality R--CR--R, are all 
conducive in improving the MMP-13 inhibition activity of a compound. To corroborate the study further, a PLS 
analysis has also been carried out on 15 descriptors identified through CP-MLR and results are given in Table 4. For 
this purpose, the descriptors have been autoscaled (zero mean and unit s.d.) to give each one of them equal weight in 
the analysis. 
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 In the PLS cross‐validation, four components have been found to be the optimum for these 15 descriptors and they 
explained 78% variance in the activity (r2 = 0.780). The MLR‐like PLS coefficients of these 15 descriptors are given 
in Table 4. The calculated activity values of training- and test-set compounds are in close agreement to that of the 
observed ones and are listed in Table 2. For the sake of comparison, the plot between observed and calculated 
activities (through PLS analysis) for the training- and test-set compounds is given in Figure 2. Figure 3 shows a plot 
of the fraction contribution of normalized regression coefficients of these descriptors to the activity (Table 4). 
Actually, the 15 identified descriptors have shared 55 PLS models and the analysis could reveal four components 
(Table 4) as optimum to explain the MMP-13 inhibition activity.  
 
The top ten descriptors in decreasing order of significance are C-025, nNR2, MATS4m, GGI3, C-006, BELv6, 
BELp6, S3K, N-075, ATS5m (Table 4, figure 3). Among these descriptors, C-025, GGI3, C-006, BELv6, BELp6, 
S3K and N-075 are part of Equations discussed above and convey same inferences in PLS analysis. The negative 
contribution of functional group count descriptor nNR2 (number of tertiary aliphatic amine functionality in a 
molecule) advocates that a higher number of such functional groups are detrimental to activity. The positive 
contribution of atomic mass weighted 2D-autocorrelation descriptors (Moran autocorrelation, MATS4m and Broto-
Moreau autocorrelation, ATS5m) suggest that higher value of these are helpful in improving the activity profile. It is 
also observed that PLS model from the dataset devoid of 15 descriptors (Table 4) remained inferior in explaining the 
activity of the analogues. 
 
3.2 Applicability domain 
On analyzing the applicability domain (AD) in the Williams plot (Figure 3) of the model based on the whole data set 
(Table 5), one compound (25; Table 1) has been identified as an obvious ‘outlier’ for the MMP-13 inhibitory 
activity if the limit of normal values for the Y outliers (response outliers) was set as 3×(standard deviation) units. 
None of the compounds was found to have leverage (h) values greater than the threshold leverage (h*). For both the 
training-set and test-set, the suggested model matches the high quality parameters with good fitting power and the 
capability of assessing external data. Furthermore, all of the compounds were within the applicability domain of the 
proposed model and were evaluated correctly. 
 

CONCLUSION  
 
The MMP-13 inhibition activity of non-zinc-chelating compounds has been quantitatively analyzed in terms of 
chemometric descriptors. The statistically validated quantitative structure-activity relationship (QSAR) models 
provided rationales to explain the inhibition activity of these congeners. The descriptors identified through 
combinatorial protocol in multiple linear regression (CP-MLR) analysis have highlighted the role of 3-path Kier 
alpha-modified shape index (S3K), complementary information content index of 1-order neighborhood symmetry 
(CIC1), eigenvalue sum from mass weighted distance matrix (SEigm), lowest eigenvalue n. 6 of Burden matrix / 
weighted by atomic van der Waals volumes (BELv6) and by atomic polarizabilities (BELp6), 3-order topological 
charge index (GGI3 and the functionality, R--CR--R (C-025).  
 
From statistically validated models, it appeared that the descriptors S3K, BELv6, BELp6 and SEigm make positive 
contribution to activity and their higher values are conducive in improving the MMP-13 inhibition activity of a 
compound. On the other hand, the descriptors CIC1, GGI3 and C-025 render detrimental effect to activity. 
Therefore, the absence of functionality, R--CR--R and lower values of descriptors CIC1 and GGI3 would be 
advantageous. Such guidelines may be helpful in exploring more potential analogues of the series. The statistics 
emerged from the test sets have validated the identified significant models. PLS analysis has further confirmed the 
dominance of the CP‐MLR identified descriptors. Applicability domain analysis revealed that the suggested models 
have acceptable predictability. All the compounds are within the applicability domain of the proposed models and 
were evaluated correctly. 
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Table.1. Structural variations and MMP-13 inhibition activity of non-zinc-chelating compounds 
(see Figure 1 for general structure) 

 
Cpd. R1 R2 X R3 pIC50 (M)a 

1 Cl
 

H 
CH 

 

6.37 

2 
O HN

O  

H 
CH 

 

6.21 

3 
OH3C

H3C

HN

O
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CH 
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4 OH3C HN

O  

H 
CH 
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O  

H 
CH 
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N
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HN N

H3C HN

O  

H 
CH 

 

7.06 
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H
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10 H3C N
H

O

 

H 
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5.81 

11 H3C
O
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H 
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12  H3C N
H
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O
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CH 
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13 H3C
O
S

H
N

O

 

H 
CH 
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14 H3C  

H 
CH 

 

6.54 

15  
O

 

H 
CH 

 

<4.30 
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16 H3C
O

 

H 
CH 

 

6.66 

17 OH3C
 

H 
N 

 

7.49 

18 
O

O

 

H 
N 

 

8.22 

19 ON
H3C

 

H 

N 

 

7.40 

20 
O

HN N  

H 
N 

 

8.22 

21 
O

N NH3C  

H 

N 
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22 
O

HN N
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H 
N 

 

8.70 

23 
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H3C  
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N 
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24 H N

N
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CH 
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O
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31  H O

CH3
HN

O  
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32 H 
N

N
CH3

HN

O

 

CH 

 

6.51 

33  H NN
H3C HN

O  

CH 

 

7.62 

34 H 
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H3C

H3C

HN

O
 

CH 

 

7.14 

35 H N
N
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O  

CH 
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36 H N

S
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CH 
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39 H N
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40 H 
N

N
HN

O  

CH 

 

8.00 

41  H N
H3C

HN

O  

CH 

 

8.40 

42  H N
F3C

HN

O  

CH 

 

8.05 

43 H 
N

CH3

HN

O

 

CH 

 

7.00 

44 H 
N

C2H5

HN

O

 

CH 

 

7.54 

45 H N

Cl
HN

O  

CH 

 

7.57 
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46 H N
N

Cl
HN

O  

CH 

 

8.52 

47  H N
N

F3C
HN

O  

CH 

 

8.15 

48 H N
F3C

HN

O  

CH 
 

8.22 

49  H N
F3C

HN

O  

CH 
 

7.55 

50 H N
F3C

HN

O  

CH 
O

 

8.70 

51 H N
F3C

HN

O  

CH 
OH  

7.60 

52 H N
N

F3C
HN

O  

CH 
 

8.05 

53 H N
N

F3C
HN

O  

CH 
 

7.44 

54 H N
N

F3C
HN

O  

CH 
O

 

8.70 

55 H N
N

F3C
HN

O  

CH 
OH  

8.30 

 

aIC50 represents the concentration of a compound to bring out 50% inhibition of MMP-13; expressed as pIC50 on 
molar basis; taken from reference [28,29]. 
 

Table 2. Observed and modeled MMP-13 inhibition activity of non-zinc-chelating compounds. 
 

Cpd. 
pIC50 (M) 

Cpd. 
pIC50 (M) 

Obsd. 
Calculated Eq. 

Obsd. 
Calculated Eq. 

(7) (8) (9) (10) PLS (7)  (8)  (9)  (10) PLS 
1 6.37 6.43 6.44 6.42 6.41 6.51 29 7.96 7.63 7.55 7.58 7.65 7.57 
2 6.21 6.75 6.76 6.81 6.81 6.95 30 6.74 6.72 6.71 6.73 6.74 7.03 
3 7.20 6.90 6.91 6.90 6.90 6.99 31 b 6.48 6.50 6.50 6.48 6.48 6.75 
4b 7.24 7.51 7.45 7.50 7.54 7.29 32 6.51 6.95 6.96 7.02 7.02 6.53 
5 7.51 7.55 7.54 7.49 7.49 7.30 33 b 7.62 7.62 7.62 7.56 7.56 7.52 
6 b 6.74 7.16 7.20 7.16 7.12 7.02 34 7.14 7.29 7.29 7.27 7.28 7.47 
7 7.06 7.65 7.64 7.41 7.40 7.36 35 6.85 7.24 7.28 7.24 7.20 7.26 
8 7.77 7.36 7.41 7.44 7.41 7.28 36 8.10 7.89 7.80 7.83 7.90 7.55 
9 6.61 6.90 6.91 6.78 6.77 7.17 37 8.10 7.79 7.80 7.76 7.76 7.74 
10 b 5.81 6.91 6.91 6.83 6.83 6.65 38 b 7.38 7.47 7.50 7.47 7.44 7.50 
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11 5.22 6.13 6.13 6.20 6.21 5.92 39 7.51 7.45 7.48 7.46 7.43 7.50 
12 b 6.34 6.78 6.75 7.09 7.12 6.74 40 8.00 7.98 8.00 7.77 7.74 7.92 
13 6.32 5.88 5.89 6.41 6.42 6.25 41 b 8.40 7.78 7.79 7.74 7.74 7.73 
14 6.54 5.92 5.91 5.65 5.65 6.03 42 b 8.05 8.07 8.11 8.48 8.46 8.17 
15 c - - - - - - 43 7.00 6.81 6.84 6.81 6.78 7.27 
16 6.66 6.23 6.22 6.34 6.36 6.19 44 7.54 7.49 7.47 7.51 7.52 7.55 
17 7.49 7.29 7.28 7.26 7.28 7.20 45 7.57 7.73 7.75 7.93 7.91 7.75 
18 b 8.22 7.36 7.36 7.53 7.54 8.08 46 8.52 8.15 8.17 8.24 8.23 8.17 
19 7.40 7.96 7.97 8.18 8.18 8.11 47 b 8.15 8.20 8.26 8.50 8.46 8.39 
20 8.22 8.17 8.18 8.05 8.04 7.92 48 8.22 8.00 7.93 8.00 8.06 7.83 
21 7.60 8.27 8.26 8.28 8.28 8.23 49 b 7.55 7.42 7.44 7.51 7.50 7.04 
22 8.70 8.27 8.27 8.12 8.11 8.27 50 8.70 8.26 8.29 8.65 8.64 8.57 
23 8.40 7.84 7.86 7.92 7.91 8.14 51 7.60 7.87 7.83 7.78 7.81 8.05 
24 7.00 7.33 7.32 7.27 7.28 6.96 52 8.05 8.33 8.31 8.09 8.10 8.06 
25 d 5.48 7.43 7.43 7.30 7.31 7.06 53 7.44 7.72 7.73 7.58 7.57 7.31 
26 6.96 6.73 6.74 6.69 6.68 6.58 54 8.70 8.47 8.52 8.67 8.64 8.80 
27 b 6.85 6.94 6.94 6.87 6.86 6.78 55 8.30 8.11 8.14 7.86 7.83 8.31 
28 7.12 7.46 7.43 7.51 7.53 7.32        

 
a See footnote under Table 1, bcompounds in test set, ccompound with uncertain activity and not included in the 
study, doutlier compound in present study. 
 

Table3. Identified descriptorsa along with their physical meaning, average regression coefficient and 
incidenceb, in modeling the MMP-13 inhibition activity 

 

S. 
No. 

Descriptor  Descriptor class Physical meaning 

 Average 
regression 
coefficient 
(incidence) 

1 S3K Topological 3-Path Kier alpha-modified  
shape index 

2.135 (10) 

2 CIC1 Topological  Complementary information  
content index of 1-order neighborhood 
symmetry 

-1.949 (4) 

3 SEigZ Topological  Eigenvalue sum from Z weighted distance 
matrix (Barysz matrix) 

1.733 (4) 

4 SEigm Topological  Eigenvalue sum from mass weighted distance 
matrix 

1.811 (4) 

5 BELv6 BCUT Lowest eigenvalue n. 6 of Burden matrix / 
weighted by atomic van der Waals volumes 

1.861 (7) 

6 BELe1 BCUT Lowest eigenvalue n. 1 of Burden matrix / 
weighted by atomic Sanderson 
electronegativities 

-0.854 (4) 

7 BELp6 BCUT Lowest eigenvalue n. 6 of Burden matrix / 
weighted by atomic polarizabilities 

1.382 (5) 
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8 GGI3 Galvez topological 
charge indices 

3-Order topological charge index -2.524 (12) 

9 ATS5m 2D-autocorrelation Broto-Moreau autocorrelation of  
a topological structure - lag 5 / weighted by 
atomic masses 

1.765 (1) 

10 MATS4m 2D-autocorrelation Moran autocorrelation - lag 4 / weighted by 
atomic masses 

0.747 (1) 

11 nCs Functional  number of total secondary C(sp3) 1.379 (1) 

12 nNR2 Functional number of tertiary amines (aliphatic) -0.741 (2) 

13 C-006 Atom centered 
fragment 

CH2RX 1.198 (2) 

14 C-025 Atom centered 
fragment 

R--CR--R -1.161 (7) 

15 N-075 Atom centered 
fragment 

R--N--R / R--N--X 0.668 (1) 

 

aThe descriptors are identified from the five parameter models, emerged from CP-MLR protocol with filter-1 as 
0.79, filter-2 as 2.0, filter-3 as 0.837, and filter-4 as 0.3 ≤ q2 ≤1.0 with a training set of 40 compounds. bThe average 
regression coefficient of the descriptor corresponding to all models and the total number of its incidence. The 
arithmetic sign of the coefficient represents the actual sign of the regression coefficient in the models. 
 
Table 4. PLS and MLR-like PLS models from the descriptors of five parameter CP-MLR models for MMP-

13 inhibition activity. 
 

A: PLS equation 
PLS components PLS coefficient (s.e.)a 
Component-1 -0.234 (0.025) 
Component-2 0.207 (0.039) 
Component-3 -0.079 (0.039) 
Component-4 0.149(0.072) 
Constant 7.423 
B: MLR-like PLS equation 
S. No. Descriptor MLR-like coefficient (f.c.)b Order 
1 S3K 0.500(0.077) 8 
2 CIC1 -0.060(-0.008) 13 
3 SEigZ 0.038(0.005) 14 
4 SEigm 0.023(0.003) 15 
5 BELv6 0.523(0.086) 6 
6 BELe1 -0.268(-0.042) 12 
7 BELp6 0.496(0.083) 7 
8 GGI3 -0.623(-0.093) 4 
9 ATS5m 0.414(0.060) 10 
10 MATS4m 0.909(0.110) 3 
11 nCs 0.313(0.044) 11 
12 nNR2 -0.745(-0.114) 2 
13 C-006 0.689(0.089) 5 
14 C-025 -0.837(-0.122) 1 
15 N-075 0.294(0.063) 9 
 Constant     6.276  
C: PLS regression statistics Values  
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n 40 
r 0.883 
s 0.392 
F 31.081 
q2

LOO 0.709 
q2

L5O 0.710 
r2

Test 0.771 
 

aRegression coefficient of PLS factor and its standard error. bCoefficients of MLR-like PLS equation in terms of 
descriptors for their original values; f.c. is fraction contribution of regression coefficient, computed from the 
normalized regression coefficients obtained from the autoscaled (zero mean and unit s.d.) data. 
 

Table 5: Models derived for the whole data set (n = 54) for the MMP-13 inhibition activity in descriptors 
identified through CP-MLR 

 

Model  r s F q2
LOO Eq. 

pIC50  = 7.264 + 2.303(0.489)S3K 
            – 1.822(0.590)CIC1 + 2.187(0.601)BELv6 
            – 2.456(0.662)GGI3 – 1.069(0.387)C-025 

 
0.827 

 
0.487 

 
20.822 

 
0.596 

 
(7a) 

pIC50 = 7.280 + 2.207(0.502)S3K  
            – 1.777(0.578)CIC1 + 2.140(0.585)BELp6 
            – 2.384(0.645)GGI3 – 1.056(0.388)C-025 

 
0.828 

 
0.486 

 
20.109 

 
0.599 

 
(8a) 

pIC50 = 5.838 + 1.606(0.627)S3K  
           + 1.937(0.642)SEigm + 1.990(0.553)BELp6 
           – 2.596(0.704)GGI3 – 1.063(0.390)C-025 

 
0.826 

 
0.487 

 
20.717 

 
0.587 

 
(9a) 

pIC50 = 5.794 + 1.692(0.614)S3K  
           + 1.969(0.653)SEigm + 2.018(0.567)BELv6 
           – 2.655(0.720)GGI3 – 1.080(0.389)C-025 

 
0.825 

 
0.489 

 
20.592 

 
0.584 

 
(10a) 

 
 

O

O

HN
R3

O
NH

CH3

X

R1

R2

 
 

Figure 1. General structure of non-zinc-chelating compounds. 
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Figure 2. Plot of observed versus caculated pIC50 values for training- and test-set compounds. 
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Figure 3. Plot of fraction contribution of MLR-like  PLS coefficients (normalized) against 15 identified 
descriptors (Table 4) associated with MMP-13 inhibition activity of the compounds. 
 

    
 

    

S
3K

 (8
)

C
IC

1 
(1

3)

S
E

ig
Z

 (
14

)

S
E

ig
m

 (
15

) B
E

Lv
6 

(6
)

B
E

Le
1 

(1
2)

B
E

Lp
6 

(7
)

G
G

I3
 (

4)

A
T

S
5m

 (
10

)

M
A

T
S

4m
 (

3)

nC
s 

 (
11

)

nN
R

2 
(2

)

C
-0

06
 (5

)

C
-0

25
 (1

)

N
-0

75
 (9

)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

F
ra

ct
io

n 
co

nt
rib

ut
io

n

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 0.1 0.2 0.3 0.4 0.5

R
es

id
ua

ls
 (

E
q.

 7
a)

Leverages

Training set; Test set

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 0.1 0.2 0.3 0.4 0.5

R
es

id
ua

ls
 (

E
q.

 8
a)

Leverages

Training set; Test set

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 0.1 0.2 0.3 0.4 0.5

R
es

id
ua

ls
 (

E
q.

 9
a)

Leverages

Training set; Test set

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 0.1 0.2 0.3 0.4 0.5

R
es

id
ua

ls
 (

E
q.

 1
0a

)

Leverages

Training set; Test set



Brij Kishore Sharma et al                                        Int. J. Chem. Pharm. Sci., 2013,Vol.1(1)  
 

                                                 Pharma Research Library                                                      26 
 

Figure 4. Williams plot for the training-set and test- set for inhibition activity of MMP-13 for the compounds 
in Table 1. The horizontal dotted line refers to the residual limit (±3×standard deviation) and the vertical 
dotted line represents threshold leverage h* (= 0.439).   
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