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ABSTRACT

The MMP-13 inhibition activity of non-zinc-chelatircompounds has been quantitatively analyzed mgef
chemometric descriptors. The statistically validatgiantitative structure-activity relationship (QS)Amodels
provided rationales to explain the inhibition aittivof these compounds. The descriptors, identifiebugh
combinatorial protocol in multiple linear regressi@P-MLR) analysis, have highlighted the role giegh Kier
alpha-modified shape index (S3K), complementaryorimfition content index of 1-order neighborhopd
symmetry (CIC1), eigenvalue sum from mass weightistance matrix (SEigm), lowest eigenvalue n. 6|of
Burden matrix / weighted by atomic van der Waalsines (BELv6) and by atomic polarizabilities (BEDp8-
order topological charge index (GGI3) and the fiomlity, R--CR--R (C-025). From statistically vaddited
models, it appeared that the descriptors S3K, BEBHEL_p6 and SEigm make positive contribution toihatt
and their higher values are conducive in improvtmg MMP-13 inhibition activity of a compound. Oretbther
hand, the descriptors CIC1, GGI3 and C-025 renag¢rindental effects to activity. Therefore, the atmse of
functionality, R--CR--R and lower values of destoiis CIC1 and GGI3 would be advantageous. PLS aisaly
has further corroborated the dominance of theMIRR identified descriptors. Applicability domain alysis
revealed that theuggested models have acceptable predictabilitthAlcompounds are within the applicability
domain of the proposed models and were evaluatedatly.

Key words: QSAR, MMP-13 inhibitors, chemometric descriptarembinatorial protocol in multiple lineaf
rearession (C-MLR) analvsis nor-Zn-chelatina compount.
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INTRODUCTION

The matrix metalloproteinases (MMPs), a family obrm than 27 zinc- and calcium-containing enzymes, a
involved in the degradation of extracellular matixd tissue remodeling [1-3]. Of the collagenaseilfa(MMP-1,
MMP-8 and MMP-13) MMP-13, the most efficient typkedollagen-degrading MMP [4,5], has now become an
attractive therapeutic target because its inhibitieduces cartilage degradation associated witlptbgression of
rheumatoid arthritis and osteoarthritis in animaldels [6,7]. However, broad-spectrum MMP inhibitesibit a
dose-limiting toxicity leading to side effects suaha painful joint stiffening (musculoskeletal dggme, MSS) and
inflammation [8-15]. It was suggested that MSSassed by the inhibition of normal extracellular maturnover
due to inhibition of other MMPs rather than MMP{1B-21]. At present, it is unclear which MMP isafies may be
involved [22] and to what extent they contributeM&S. Thus, selective inhibition of MMP-13, devaifl MSS,
may prove to be better therapeutic research area.

MMPs having a tris(histidine)-bound zinc(ll), a@s the catalytic site for the hydrolysis of sulistrdlost MMP
inhibitors achieve affinity through interaction tithe catalytic zinc via a chelating moiety sucthgdroxamic acid
and by locating hydrophobic functionality in the' $bcket [8,28]. The S1 pocket varies in length and amino acid
sequence for different MMP isoforms. Such variagidretween MMP family members were, therefore, used
design MMP inhibitors with different selectivity gfiles [23]. MMP-13 has additional region, '§1for inhibitor
binding that has not been identified in other MMBforms. Most potent and selective MMP-13 inhitsitoccupy
both the S1and S1* pockets only [24-27] and reduces the need to l@¥a-binding functionality.

In view of this, two new classes of potent and atéle MMP-13 inhibitors involving unique binding me at the
active site and not interacting with the catalyiiec, have recently been reported [28,29]. The garstructure of
these classes is shown in Figure 1. In the finsesgthe structural variations appeared at pasipand in incision
X while in the second series, positionsdRd R have been varied. These functional variationgaren in Table 1.

The first series of compound4-23) were obtained through optimization with the aifdco-crystal structural
information [28]. For this, the hit compount) (vas extended out from the active site into theg®tket by adding
an aryl group through two different linking funatilities. The aryl ring occupies the entrance ®&03$1 pocket thus
providing the opportunity to grow into the 'Siocket to improve the potency against MMP-13 dred gelectivity
profile against other MMP isoforms. Depending oa timkage different trends for potency and seléistifor the

respective aryl groups were observed.

To further improve potency against MMP-13, the secageries (compounda3-55) was explored to investigate
alternative ways of interacting with the'Sfiocket [29]. The starting point of this optimizatiwas the result of a
hybridization of hit structure (compourid with another series of MMP-13 inhibitobssed on an overlay of their
crystal structures. In these analogues, the andigg was appended at the C-3 position of phenyl tinough a
methyl amide linkage occupying the MMP' bckets somewhat differently than the analogoustfanality in first
class of compounds. Additionally, the cyclohexybgp, able to bind in the Spocket, was also replaced by other
smaller substituents to modify the lipophilicity sdme of the congeners.

In both reported studies, the structure-activitlattenships (SARs) were, however, targeted at fheragion of
substituents at different positions and providedrationale to reduce the trial-and-error factorgntk, in the
present communication a 2D-quantitative SAR (2D-®$Aas been conducted to provide the rationaledfog-
design and to explore the possible mechanism céttien. In the congeneric series, where a relaiudy is being
carried out, the 2D-descriptors may play importesie in deriving the significant correlations witliological
activities of the compounds. The novelty and impoce of a 2D-QSAR study is due to its simplicity fbe
calculations of different descriptors and theireiptetation (in physical sense) to explain thebiilin actions of
compounds at molecular level.

MATERIAL AND METHODS

2.1 Data-set

For present work the non-Zn-chelating compoundsl@a), along with their in vitro inhibition actiyi of MMP-
13, have been taken from the literature [28,29]e Tihibition activity, 1G,, represents the concentration of a
compound to achieve 50% inhibition of MMP-13 agaitype Il collagen. The same is expressed asypd@ a
molar basis and stand as the dependent descrigstprdsent quantitative analysis.
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For modeling purpose, the complete data-set wadeativinto training- and test-sets. The trainingiwwas used to
derive statistical significant models while thetisst, consisting nearly 25% of total compoundss employed to
validate such models. The selection of test-setpmamds was made through SYSTAT [30] using the sitigkage
hierarchical cluster procedure involving the Euelid distances of the inhibition activity, giQalues. The test-set
compounds were selected from the generated cltrgterin such a way to keep them at a maximum plessib
distance from each other. In SYSTAT, by defaulg ttormalized Euclidean distances are computeditotie
objects of cluster. The normalized distances am mean-squared distances. The single linkage distance
between two closest members in clustering. It gererliong clusters and provides scope to choosectsbat
intervals. Due to this reason, a single linkageteling procedure was applied.

2.2 Molecular descriptors

The structures of the compounds (Table 1), undetysthave been drawn in 2D ChemDraw [31] usingsth@dard
procedure. These structures were converted intokgEcts using the default conversion procedure émginted in
the CS Chem3D Ultra. The generated 3D-structurékeo€ompounds were subjected to energy minimizatiadhe
MOPAC module, using the AM1 procedure for closedlisbystems, implemented in the CS Chem3D Ultrds Th
will ensure a well defined conformer relationshiggass the compounds of the study. All these energymized
structures of respective compounds have been ptotd8RAGON software [32] for computing the desavifst
corresponding to OD-, 1D-, and 2D-classes. The caatbrial protocol in multiple linear regressionR®ILR) [33]
analysis and partial leastjuares (PLS) [336] procedures have been used in the present workidseloping
QSAR models. A brief description of the computasibprocedure is given below.

2.3 Model development

The CP-MLR is a ‘filter'-based variable selectioropedure for model development in QSAR studies.[33]
procedural aspects and implementation are discusssaime of our recent publications [37-42]. Theush of this
procedure is in its embedded ‘filters’. They aréefly as follows: filter-1 seeds the variables baywof limiting
inter-parameter correlations to predefined levaip@r limit < 0.79); filter-2 controls the variables entry to a
regression equation through t-values of coeffidefthreshold value> 2.0); filter-3 provides comparability of
equations with different number of variables inmerof square root of adjusted multiple correlatoefficient of
regression equation, r-bar; filter-4 estimatesdbesistency of the equation in terms of cross-eaid f or of with
leave-one-out (LOO) cross-validation as defauliap(threshold value 0.8 ¢ < 1.0). All these filters make the
variable selection process efficient and lead tenmue solution. In order to collect the descriptarith higher
information content and explanatory power, the gshodd of filter-3 was successively incremented vittreasing
number of descriptors (per equation) by considethrggr-bar value of the preceding optimum modethesnew
threshold for next generation. Furthermore, in otdediscover any chance correlations associatéldl tive models
recognized in CP-MLR, each cross-validated model baen put to a randomization test [43,44] by reguka
randomization of the activity to ascertain the aw®oorrelations, if any, associated with them. thts, every model
has been subjected to 100 simulation runs withnsigled activity. The scrambled activity models widgression
statistics better than or equal to that of theipalactivity model have been counted, to exprisspercent chance
correlation of the model under scrutiny.

To support the findings, a partial least squargésSjRinalysis has been carried out on descriptanstified through
CP-MLR. The study facilitates the development ofsmgle window’ structureactivity model and help to
categorize the potentiality of identified descrigton explaining the MMP-13 inhibition activity piles of the
compounds. It also gives an opportunity to makemparison of the relative significance among thscdgptors.
The fraction contributions obtainable from the nalimed regression coefficients of the descriptdiswa this
comparison within the modeled activity.

2.4 Applicability Domain

The utility of a QSAR model is based on its acoaiatediction ability for new compounds. A modevaid only
within its training domain and new compounds mustalssessed as belonging to the domain before tdelrso
applied. The applicability domain is assessed lyl¢lrerage values for each compound [45,46]. Théais plot
(the plot of standardized residuals versus levevaiges, h) can then be used for an immediate iamgles graphical
detection of both the response outliers (Y outliarsd structurally influential chemicals (X outkgiin the model. In
this plot, the applicability domain is establistiadide a squared area within + x (s.d.) and a byerthreshold 'h
The threshold his generally fixed at 3(k + 1)/n (n is the numbétraining-set compounds and k is the number of
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model parameters) whereas x = 2 or 3. Predictiost im&l considered unreliable for compounds withgh hkeverage
value (h > f). On the other hand, when the leverage value adrapound is lower than the threshold value, the
probability of accordance between predicted an@iesi values is as high as that for the trainirigsempounds.

RESULTS AND DISCUSSION

3.1 QSAR results

For the compounds in Table 1, a total number of dé&criptors belonging to OD- to 2D- classes of [FIN have
been computed and were subjected to CP-MLR analykes preliminary assessment of complete datatggtested
that the lone compourgb, having a methyl group at,Remained as an ‘outlier’. Similarly compoufh8, due to its
uncertain activity value, could not fit into theemid of remaining compounds of the series. Bothettoesnpounds
were, therefore, ignored in the subsequent analyBes remaining 53 compounds were further dividea int
training-set and test-set.

Thirteen compounds (nearly 25% of total populatitive been selected for test-set through SYSTATe Th
identified test-set was then used for externaldedion of models derived from remaining forty cormapds in the
training-set. The squared correlation coefficiegtiween the observed and predicted values of congsofuam test-
set, fre, Was calculated to explain the fraction of exptainvariance in the test-set which is not part of
regression/model derivation. It is a measure ofdgess of the derived model equation. A highyvalue is always
good. But considering the stringency of test-seicpdures, often’s. values in the range of 0.500-0.600 are
regarded as indicative predictive models. Followthg strategy to explore only predictive models,-NIER
resulted into 70 models in two descriptors, 99 nwde three descriptors, 8 models in four descriptand 13
models in five descriptors. However, the higheghiicant of them, in statistical sense, are gittaough Equations

(1)-(10)

pICso= 5.983 + 2.242(0.324)S3K + 0.874(0.228)nRORPh
n=40,r=0.764, s = 0.525, F = 25.91%,g= 0.505, G.50= 0.511, fres= 0.634 (1)

pICso= 6.230 + 1.434(0.417)VAR + 1.141(0.241)N-075
n=40,r=0.736,s = 0.551, F = 21.878,g= 0.470, §.s0= 0.474, fres= 0.670 ()

pICso= 6.598 + 3.470(0.415)S3K — 1.183(0.432)GGI3 — 1(8823)C-025
n =40, r=0.846, s = 0.440, F = 30.1130g= 0.629, §.50= 0.616, fres= 0.504 )

pICso= 6.549 + 2.513(0.317)S3K — 1.745(0.327)C-025 66(6.260)C-027
n =40, r=0.833,s=0.456, F = 27.299,g= 0.613, Giso= 0.615, fres= 0.553 (4)

plCso=5.617 + 2.491(0.533)SEigm + 2.703(0.433)BELV6152(0.648)GGI3
+0.779(0.232)N-075
n=40,r=0.856,s = 0.432, F = 23.993,g= 0.646, Gs0= 0.652, fres= 0.751 (5)

pICso= 7.052 + 1.354(0.518)S3K — 0.515(0.224)PJI2 + 1(8510)C-006
—1.316(0.343)C-025
n=40,r=0.854, s = 0.435, F = 23.66%0g= 0.644, §.50= 0.634, fros= 0.658 (6)

pICso= 7.363 + 2.626(0.491)S3K — 1.629(0.553)CIC1 + 1(67632)BELV6
—2.601(0.627)GGI3 — 0.967(0.356)C-025
n =40, r=0.880, s = 0.404, F = 23.2680g= 0.661, §50= 0.648, fres= 0.652 7

pICso= 7.358 + 2.591(0.504)S3K — 1.570(0.541)CIC1 + 2(60614)BELp6
- 2.528(0.612)GGI3 — 0.957(0.359)C-025
n=40,r=0.879, s = 0.405, F =23.104.0g= 0.661, §.50= 0.675, fres= 0.675 (8)

pICso= 6.140 + 2.230(0.654)S3K + 1.551(0.650)SEigm 94(8.607)BELp6
— 2.483(0.679)GGI3 — 1.102(0.359)C-025
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n=40,r=0.870,s = 0.418, F = 21.176,g= 0.639, G 50= 0.654, fres= 0.620 (9)

plCso= 6.115 + 2.267(0.642)S3K + 1.576(0.660)SEigm 82(8.622)BELV6
— 2.520(0.693)GGI3 — 1.120(0.356)C-025
n =40, r=0.870,s=0.419, F = 21.1640g= 0.637, Giso= 0.618, fres= 0.619 (10)

Where n and F represent respectively the numbdaiaf points and the F-ratio between the variantealoulated
and observed activities. The data within the pdreses are the standard errors associated with seégme
coefficients. In all above equations, the F-valtasained significant at 99% level. The indicégg and dso (>
0.5), except baseline Equation (2), have accoufaedheir internal robustness. For all above modBEs Free
values, obtained greater than 0.5, specified tieaselected test-set is fully accountable for tariernal validation.
The descriptors, in all above models, have beeleddmetween the intervals 0 to 1 [47] to ensuré shdescriptor
will not dominate simply because it has larger maller pre-scaled value compared to the other g#ecs. In this
way, the scaled descriptors would have equal patdntinfluence the QSAR models.

The signs of the regression coefficients have Btéid the direction of influence of explanatory &htés in above
models. The positive regression coefficient assedido a descriptor will augment the activity plefiof a
compound while the negative coefficient will caulrimental effect to it. Though Equations (1)-(¥d)erged as
significant predictive models but Equations (7))(28mained statistically more efficient. The lateur models,
involving five descriptors in each, could estimatie to 77.44 percent of variance in observed agtioit the
compounds. In fact, a total number of 13 such mmndsharing 15 descriptors among them, have beeaainelit
through CP-MLR and only four of them, being mogingicant have been documented through Equatio{1(@).
The shared 15 descriptors along with their briefcdiption, average regression coefficients and totadences are
given in Table 2. Besides listed descriptors inl@ah the other identified descriptors PJI2 and VAR from
topological class, nRORPh is from functional clasgl C-027 is from atom centred fragment class. PR
represents the 2D Petitjean shape index (EquajioviAR explains the variation in a molecular sture (Equation
2), nRORPh accounts for the number of ethers (atiojri&quation 1) and C-027 encodes the functityn&ti--CH--
X (Equation 4).

The further discussion is, however, based on tlghdst significant Equations (7)-(10). The derivéaltistical
parameters of these four models have indicatedttiet level of significance is almost the sameedé models
were, therefore, used to calculate the activityfilg® of all the compounds and are included in €ablfor the sake
of comparison with observed ones. A close agreelmetwteen them has been observed. Additionallygthphical
display, showing the variation of observed versalsudated activities is given in Figure 2 to instine goodness of
fit for each of these four models.

The participated descriptors in these models af¢, £3C1, SEigm, BELv6, BELp6, GGI3 and C-025. These
descriptors represent, respectively, 3-path Kigphalmodified shape index, complementary informatontent
index of 1-order neighborhood symmetry, eigenvaiu@ from mass weighted distance matrix, lowestraigkie n.

6 of Burden matrix / weighted by atomic van der Waamlumes (v) and by atomic polarizabilities (B}prder
topological charge index and the functionality, BR--R.

The S3K encodes information about the centralitybEnching in the H-depleted molecular graph. THEIC
measures the deviation of the information contamtgining to neighbourhood symmetry of 1-order jI@dm its
maximum value. The descriptor SEigm determinesstha of all the eigenvalues of atomic mass weighsthnce
matrix of the H-depleted molecular graph.

From Equations (7)-(10), it appeared that the detsos S3K, BELv6, BELp6 and SEigm make positive
contribution to activity while the descriptors CIG&GI3 and C-025 render the negative role to iusto explore
more potential analogues of the series, the vahfegrevalent descriptors of a given model may beidts
according to delineated strategy. For example, foug7) has revealed that the higher values otidg®rs S3K
and BELvV6, the lower (or more negative) value ddatptor CIC1 and absence of functionality R--CR-dre all
conducive in improving the MMP-13 inhibition actiyiof a compound. To corroborate the study furtlEePLS
analysis has also been carried out on 15 descsitentified through CP-MLR and results are give able 4. For
this purpose, the descriptors have been autos¢zed mean and unit s.d.) to give each one of tbgual weight in
the analysis.
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In the PLS crossalidation, four components have been found tohieeaptimum for these 15 descriptors and they
explained 78% variance in the activity £r0.780). The MLRlike PLS coefficients of these 15 descriptors dvery

in Table 4. The calculated activity values of tmag: and test-set compounds are in close agreetoghtt of the
observed ones and are listed in Table 2. For tke s comparison, the plot between observed anculzdéd
activities (through PLS analysis) for the trainitagnd test-set compounds is given in Figure 2. Ei@gshows a plot

of the fraction contribution of normalized regressicoefficients of these descriptors to the agtiitable 4).
Actually, the 15 identified descriptors have shas®JPLS models and the analysis could reveal foanponents
(Table 4) as optimum to explain the MMP-13 inhifnitiactivity.

The top ten descriptors in decreasing order ofifsigmce are C-025, nNR2, MATS4m, GGI3, C-006, BELv
BELp6, S3K, N-075, ATS5m (Table 4, figure 3). Amotigese descriptors, C-025, GGI3, C-006, BELv6, B&ELp
S3K and N-075 are part of Equations discussed abadeconvey same inferences in PLS analysis. Thative
contribution of functional group count descriptdlR2 (number of tertiary aliphatic amine functiotalin a
molecule) advocates that a higher number of sucictional groups are detrimental to activity. Thesifige
contribution of atomic mass weighted 2D-autocotretadescriptors (Moran autocorrelation, MATS4m d&roto-
Moreau autocorrelation, ATS5m) suggest that higladue of these are helpful in improving the actiytofile. It is
also observed that PLS model from the dataset dedfal5 descriptors (Table 4) remained inferioexplaining the
activity of the analogues.

3.2 Applicability domain

On analyzing the applicability domain (AD) in theillldms plot (Figure 3) of the model based on theole data set
(Table 5), one compoun®%; Table 1) has been identified as an obvious ‘ettlfor the MMP-13 inhibitory
activity if the limit of normal values for the Y diers (response outliers) was set as 3x(standavihtion) units.
None of the compounds was found to have leveragealnes greater than the threshold leverage @dj.both the
training-set and test-set, the suggested modelhmestthe high quality parameters with good fittirayver and the
capability of assessing external data. Furthernat@f the compounds were within the applicabititymain of the
proposed model and were evaluated correctly.

CONCLUSION

The MMP-13 inhibition activity of non-zinc-chelaincompounds has been quantitatively analyzed imsewf
chemometric descriptors. The statistically validatguantitative structure-activity relationship (QS)Amodels
provided rationales to explain the inhibition aittivof these congeners. The descriptors identifiecbugh
combinatorial protocol in multiple linear regressi(CP-MLR) analysis have highlighted the role op&h Kier
alpha-modified shape index (S3K), complementargrimfation content index of 1-order neighborhood swimn
(CIC1), eigenvalue sum from mass weighted distana&ix (SEigm), lowest eigenvalue n. 6 of Burdentrnina
weighted by atomic van der Waals volumes (BELVG) ag atomic polarizabilities (BELp6), 3-order topgical
charge index (GGI3 and the functionality, R--CR(€R025).

From statistically validated models, it appeareat the descriptors S3K, BELv6, BELp6 and SEigm mpdisitive
contribution to activity and their higher values aronducive in improving the MMP-13 inhibition adty of a
compound. On the other hand, the descriptors CI&&)3 and C-025 render detrimental effect to adtivit
Therefore, the absence of functionality, R--CR-4Rl dower values of descriptors CIC1 and GGI3 wohkl
advantageous. Such guidelines may be helpful ifoeirg more potential analogues of the series. Stagistics
emerged from the test sets have validated theifaghsignificant models. PLS analysis has furtbenfirmed the
dominance of the GRILR identified descriptors. Applicability domain alysis revealed that trRiggested models
have acceptable predictability. All the compoundss &ithin the applicability domain of the proposeddels and
were evaluated correctly.
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Table.1. Structural variations and MMP-13 inhibition activity of non-zinc-chelating compounds
(see Figure 1 for general structure)
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/ A
7/ /
46 H N>/_'\{ HN CH '/O 8.52
=/ 0
F3C N/ .
- /)
47 H N>/\__N>_H<{\‘ cH 7 O 8.15
=/ 0
FSC -_\//\ s
48 H N AN CH '//r 8.22
=/ 0
~ 4
49 H N AN CH g 755
=/ 0
50 H JN HN CH O) 8.70
=/ 0
FSC -_\//\ L.
51 H N, AN CH ”/ﬁ)H 7.60
=/ 0
FSC -_\//\ Ly
52 H N>/\__N>_H<{\‘ CH '//r 8.05
=/ 0
N HN—" e
53 H 7 CH +/ 7.44
N \V/
\=)_§O
FSC VA v
-
54 H N>/_ N HN cH ’ O) 8.70
=/ 0
FSC)—N HN— *7
%
55 H N2 CH <Gy 830
=/ 5

8 Cso represents the concentration of a compound to wirtg50% inhibition of MMP-13; expressed as glGn
molar basis; taken from reference [28,29].

Table 2. Observed and modeled MMP-13 inhibition agtity of non-zinc-chelating compounds.

pICso (M) pICso (M)

Cpd. Calculated Eq. Cpd. Calculated Eq.

Obsd.- " ® (9 (0) PLs Obsd-—7 @) (9 (10) PLs
1 6.37 6.43 6.44 642 641 651 29 796 7.63 7.5%877.65 7.57
2 621 6.75 6.76 681 681 695 30 6.74 6.72 6.77366.74 7.03
3 720 6.90 691 690 690 6.99 31 6.48 650 650 6.48 6.48 6.75
4° 724 751 745 750 754 729 32 651 6.95 6.9627.0.02 6.53
5 751 755 754 7.49 7.49 7.30 3762 762 762 756 7.56 7.52
6° 6.74 7.16 720 7.16 7.12 7.02 34 714 729 72977728 7.47
7 706 7.65 7.64 7.41 7.40 736 35 6.85 7.24 728247720 7.26
8 777 736 741 7.44 7.41 728 36 810 7.89 7.8377.90 7.55
9 661 6.90 691 6.78 6.77 7.17 37 810 7.79 7.80677.76 7.74
10" 581 691 691 683 6.83 6.65 W8 7.38 7.47 750 7.47 7.44 750
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11
12°
13
14
15¢
16
17
18°
19
20
21
22
23
24
25¢
26
27°
28

5.22
6.34
6.32
6.54

6.66
7.49
8.22
7.40
8.22
7.60
8.70
8.40
7.00
5.48
6.96
6.85
7.12

6.13
6.78
5.88
5.92
6.23
7.29
7.36
7.96
8.17
8.27
8.27
7.84
7.33
7.43
6.73
6.94
7.46

6.13
6.75
5.89
5.91

6.22
7.28
7.36
7.97
8.18
8.26
8.27
7.86
7.32
7.43
6.74
6.94
7.43

6.20
7.09
6.41
5.65

6.34
7.26
7.53
8.18
8.05
8.28
8.12
7.92
7.27
7.30
6.69
6.87
7.51

6.21 5.92 39 751 745 7486 7.43 7.50
7.12 6.74 40 8.00 798 8.0077.7.74 7.92
6.42 6.25 41840 7.78 7.79 7.74 7.74 7.73
5.65 6.03 42 8.05 8.07 811 848 8.46 8.17

- 43 700 681 6.84 681 6.78 7.27
6.36 6.19 44 754 749 74Bl1 752 755
7.28 7.20 45 757 773 77®3 791 7.75
7.54 8.08 46 852 815 8.12488.23 8.17
8.18 8.11 47 815 820 826 850 8.46 8.39
8.04 7.92 48 822 800 7830 8.06 7.83
8.28 8.23 49 755 7.42 7.44 751 750 7.04
8.11 8.27 50 870 8.26 82%5 8.64 857
791 8.14 51 760 787 7838 7.81 8.05
7.28 6.96 52 8.05 8.33 88D9 8.10 8.06
731 7.06 53 744 772 7.7%87.757 7.31
6.68 6.58 54 8.70 8.47 88%7 8.64 8.80
6.86 6.78 55 830 811 8.1867.7.83 8.31
7.53 7.32

3See footnote under Table’tpmpounds in test séompound with uncertain activity and not includedtie

study,“outlier compound in present study.

Table3. Identified descriptor< along with their physical meaning, average regressn coefficient and

incidencé, in modeling the MMP-13 inhibition activity

Average
S. . . . : regression
No. Descriptor Descriptor class Physical meaning coefficient
(incidence)

1 S3K Topological 3-Path Kier alpha-modified 2.135 (10)
shape index

2 cici Topological Complementary information -1.949 (4)
content index of 1-order neighborhood
symmetry

3 SEigZ Topological Eigenvalue sum from Z weighdstance 1.733 (4)
matrix (Barysz matrix)

4 SEigm Topological Eigenvalue sum from mass weigldistance 1.811 (4)
matrix

5 BELv6 BCUT Lowest eigenvalue n. 6 of Burden matri 1.861 (7)
weighted by atomic van der Waals volumes

6 BELel BCUT Lowest eigenvalue n. 1 of Burden nxatri -0.854 (4)
weighted by atomic Sanderson
electronegativities

7 BELp6 BCUT Lowest eigenvalue n. 6 of Burden matri 1.382 (5)
weighted by atomic polarizabilities
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10

11
12

13

14

15

GGI3

ATS5m

MATS4m

nCs
nNR2

C-006

C-025

N-075

Galvez topological
charge indices

2D-autocorrelation

2D-autocorrelation

Functional
Functional

Atom centered
fragment

Atom centered
fragment

Atom centered
fragment

3-Order topological charge index

Broto-Moreau autocottielaof
a topological structure - lag 5 / weighted by
atomic masses

Moran autocorrelatidag 4 / weighted by
atomic masses

number of total secondary C(sp3)
number of tertiary amines (aditd)

CH2RX

R--CR--R

R--N--R / R--N--X

-2.524 (12)

1.765 (1)

0.747 (1)

1.379 (1)
-0.741 (2)

1.198 (2)

-1.161 (7)

0.668 (1)

®The descriptors are identified from the five partenenodels, emerged from CP-MLR protocol with filfe as
0.79, filter-2 as 2.0, filter-3 as 0.837, and filteas 0.3 ¢ <1.0 with a training set of 40 compoun8he average
regression coefficient of the descriptor correspomdo all models and the total number of its imecide. The
arithmetic sign of the coefficient represents tbesal sign of the regression coefficient in the mled

Table 4. PLS and MLR-like PLS models from the desdptors of five parameter CP-MLR models for MMP-
13 inhibition activity.

A: PLS equation

PLS components
Component-1
Component-2
Component-3
Component-4
Constant

PLS coefficient (sSe.)
-0.234 (0.025)

0.207 (0.039)

-0.079 (0.039)
0.149(0.072)

7.423

B: MLR-like PLS equation

S. No. Descriptor MLR-like coefficient (f.&.) Order
1 S3K 0.500(0.077) 8
2 CiCc1 -0.060(-0.008) 13
3 SEigz 0.038(0.005) 14
4 SEigm 0.023(0.003) 15
5 BELv6 0.523(0.086) 6
6 BELel -0.268(-0.042) 12
7 BELp6 0.496(0.083) 7
8 GGI3 -0.623(-0.093) 4
9 ATS5m 0.414(0.060) 10
10 MATS4m 0.909(0.110) 3
11 nCs 0.313(0.044) 11
12 nNR2 -0.745(-0.114) 2
13 C-006 0.689(0.089) 5
14 C-025 -0.837(-0.122) 1
15 N-075 0.294(0.063) 9
Constant 6.276

C: PLS regression statistics Values
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n 40

r 0.883
s 0.392
F 31.081
oo 0.709
Fiso 0.710
Tes 0.771

Regression coefficient of PLS factor and its staddzror. Coefficients of MLR-like PLS equation in terms of
descriptors for their original values; f.c. is fiiao contribution of regression coefficient, compaitfrom the
normalized regression coefficients obtained fromahtoscaled (zero mean and unit s.d.) data.

Table 5: Models derived for the whole data set (n §4) for the MMP-13 inhibition activity in descriptors
identified through CP-MLR

Model r s F A’Loo Eq.
pICso = 7.264 + 2.303(0.489)S3K 0.827 0.487 20.822 0596 (7a)

—1.822(0.590)CIC1 + 2.187(0.601)BELV6

— 2.456(0.662)GGI3 — 1.069(0.387)C-025
pICso= 7.280 + 2.207(0.502)S3K 0.828 0.486 20.109 0.599 (8a)

—1.777(0.578)CIC1 + 2.140(0.585)BELp6

— 2.384(0.645)GGI3 — 1.056(0.388)C-025
pICso=5.838 + 1.606(0.627)S3K 0.826 0.487 20.717 0.587 (9a)

+1.937(0.642)SEigm + 1.990(0.553)BELp6

—2.596(0.704)GGI3 — 1.063(0.390)C-025
pICso=5.794 + 1.692(0.614)S3K 0.825 0.489 20.592 0.584 (10a)

+1.969(0.653)SEigm + 2.018(0.567)BELV6

— 2.655(0.720)GGI3 — 1.080(0.389)C-025

CH,
0 /
R, NH
R HN="
1 / Rs
0
\
X \ / o
Figure 1. General structure of non-zinc-chelating ampounds.
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o o N oo ©
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o
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[
o
J

o oo N 0 ©

Calculated pICs, (Eq. 9)
g o ~N oo ©
Calculated plCs, (Eq. 10)
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o
J
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g o N 0 ©
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Figure 2. Plot of observed versus caculated pkgvalues for training- and test-set compounds.
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Figure 3. Plot of fraction contribution of MLR-like PLS coefficients (normalized) against 15 identifi
descriptors (Table 4) associated with MMP-13 inhiltion activity of the compounds.
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Figure 4. Williams plot for the training-set and test- set for inhibition activity of MMP-13 for the compounds
in Table 1. The horizontal dotted line refers to tle residual limit (x3xstandard deviation) and the vedical
dotted line represents threshold leverage h* (= 039).
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