Simultaneous Estimation of Amlodipine Besylate and Perindopril Erbumine in combined Dosage form by RP-HPLC

Tribhuvan Singh*, M. Purushothaman, Jogu Chandrudu, S. Mohammed Yusuf

Scient Institute of Pharmacy, Ibrahimpatnam, Hyderabad, India

Abstract
The present work was developed and validated an analytical method for quantitative determination of Perindopril Erbumine and Amlodipine Besylate in a tablet formulation. Chromatographic separation of the two drugs was achieved on an Eclipse XDB C-8 (150 mm X 4.6 mm), 5mm. The mobile phase constituted of Buffer: Acetonitrile (65:35) and pH adjusted to 2.6 with dilute Ortho-Phosphoric Acid was delivered at the flow rate 1.0 mL/min. Detection was performed at 210 nm. Separation was completed within 8 min. The retention time for Perindopril Erbumine and Amlodipine Besylate 3.168 & 5.504 min respectively. Calibration curves were linear with correlation coefficient between 0.99 to 1.0 over a concentration range of 8 to 60 mg/mL of Perindopril Erbumine and 10 to 75 mg/mL of Amlodipine Besylate. The relative standard deviation (RSD) was found< 2.0%.

Keywords: Perindopril Erbumine; Amlodipine Besylate; Reversed-phase HPLC.

1. Introduction
Perindopril Erbumine and Amlodipine Besylate are Antihypertensive drugs. Perindopril Erbumine is Angiotensin Converting Enzyme Inhibitor. It is used for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. Amlodipine besylate is the Calcium channel blocker[1]. It is used as an anti-hypertensive and in the treatment of angina. It lowers the blood pressure, relaxes heart muscles and

International Journal of Medicine and Pharmaceutical Research

Journal Home Page: www.pharmaresearchlibrary.com/ijmpr

International Journal of Medicine and Pharmaceutical Research

Copyright©2018 Tribhuvan Singh. Production and hosting by Pharma Research Library. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Contents
1. Introduction ... 121
2. Materials and Method .. 122
3. Results and Discussion .. 122
4. Conclusion .. 123
5. References .. 123

1. Introduction
Perindopril Erbumine and Amlodipine Besylate are Antihypertensive drugs. Perindopril Erbumine is Angiotensin Converting Enzyme Inhibitor. It is used for the treatment of hypertension. It may be used alone or in combination with other antihypertensive agents. Amlodipine besylate is the Calcium channel blocker[1]. It is used as an anti-hypertensive and in the treatment of angina. It lowers the blood pressure, relaxes heart muscles and...
dilates the heart blood vessels to prevent spasm. The chemical name for Perindopril Erbumine is 2- Methyl Propane-2-amine (2S,3As,7As)-1-[(2S)-2-[(1S)-1- (ethoxycarbonyl) butyl]amine] propanoyl[octahydro-1H-indol-2-carboxylate.

The chemical name for Amlodipine besylate is 3-ethyl 5-methyl 4RS-2-[(2-aminoethoxy) methyl]-4-(2-Chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate benzene sulphonate.[1]

![Fig 1: Structure of Perindopril](image1)

![Fig 2: Structure of Amlodipine](image2)

Literature survey revealed that Methods available for the determination of Perindopril Erbumine include [HPLC] [4], [LCMS] [5] and [Crystal CE] [6]. Methods available for the determinations of Amlodipine besylate include [HPLC] [7] [8] [9], HPTLC [10] simultaneous spectrophotometric determination [11] [12] [13], Spectrofluorometric [14], [LCMS] [15] and stability indicating assay method [16]. The present work describes a validated reverse phase HPLC method for simultaneous determination of these drugs in tablet dosage form. However no references have been found for quantitative determination of Perindopril Erbumine and Amlodipine Besylate in pharmaceutical preparations. The major advantage of the proposed method is that Perindopril Erbumine and Amlodipine Besylate can be determined on a single chromatographic system with the same detection wavelength.

2. Materials and Methods

Chemicals and Materials:

Cadila Healthcare Limited. Supplied Perindopril Erbumine and Vent Unimark remedies supplied Amlodipine Besylate. Acetonitrile and Ortho Phosphoric Acid was supplied by Spectrochem and EMerck Limited.

Instrumentation:

Shimadzu 2010C- integrated high performance liquid chromatographic system was used for this experiment. Shimadzu 2010C system equipped with quaternary gradient pump, 2010C UV-VIS detector, 2010C Column Oven and 2010C programmable auto sampler controlled by CLASS-VP software. The Eclipse XDB C8 column (150 X 4.6, 5mm) was used as a stationary phase. HPLC conditions are given Table 1.

<table>
<thead>
<tr>
<th>Table 1: Chromatographic conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
</tr>
<tr>
<td>Detector</td>
</tr>
<tr>
<td>Injection volume</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Run time</td>
</tr>
<tr>
<td>Flow rate</td>
</tr>
<tr>
<td>Mobile phase Buffer</td>
</tr>
</tbody>
</table>

Buffer Preparation:

Weigh 6.8 Pottasium Dihydrogen Phosphate in to 1000 ml of Milli Q water and mix.

Mobile Phase Mixture of Buffer:

Acetonitrile in the ratio of (65:35), Adjust pH 2.6 with Ortho Phosphoric Acid.

Diluent Mixture of Buffer:

Acetonitrile in the ratio of (65:35), Adjust pH 2.6 with orthophosphoric acid.

Standard Preparation:

Standard stock solutions of 400µg.mL-1 and 700µg.mL-1 were prepared by dissolving 40 mg PerindoprilErbumine and 70 mg Amlodipine Besylate in 100 ml diluent respectively. From this stock solution, working standard solution having concentration 40 µg.mL-1 and 70 µg.mL-1 were prepared by appropriate dilution for Perindopril Erbumine and Amlodipine Besylate respectively.

Sample Preparation:

Weigh accurately tablets powdered equivalent to about 40 mg of Perindopril Erbumine and 50 mg of Amlodipine besylate in to 200 mL volumetric flask. Add about 150 mL Mobile phase and sonicate to dissolve. Now make volume up to the mark with Mobile phase. Filtered it through 0.45 µ HVLP nylon filter and made further dilution 5.0 mL of this solution to 25.0 mL with mobile phase and mix.

3. Results and Discussion

Method Validation System Suitability and System Precision:

System suitability and system precision was daily performed during entire validation of this method. The results of system suitability and system precision were presented below.

Linearity and Calibration Curve:

The plot of peak area response against concentration is shown in fig. The plot is linear over the concentration range of 8 to 60 mg/mL and 10 to 75 mg / mL for Perindopril Erbumine and Amlodipine Besylate respectively. Linearity of the calibration curve was determined by weighed (1/c) least square regression analysis. The correlation coefficient was found to be 0.99 to 1.00. A linear relationship was found for all components. The results of linearity, limit of detection and limit of quantification were presented below.

Specificity:
There was no interference from sample placebo and peak purity of Perindopril Eburnine and Amlodipine Besylate were 0.99999 and 1.00000 respectively. It showed that developed analytical method was specific for the analysis of Perindopril Eburnine and Amlodipine Besylate in tablet dosage form.

Standard and Sample Solution Stability:
Standard and sample solution stability was evaluated at room temperature for 24 h. The relative standard deviation was found below 2.0%. It showed that both standard and sample solution was stable up to 24 h at room temperature.

Method Precision:
The precision of the method was established by carrying out the analysis of the analyte (n=6) using the proposed method. The low value of standard deviation showed that the method was precise. The results obtained were presented below.

Method robustness:
Robustness of the method was determined by small deliberate changes in flow rate, mobile phase ratio and column oven temperature. The content of the drug was not adversely affected by these changes as evident from the low value of relative standard deviation indicating that the method was robust. The results of robustness were presented below.

Discussion
The detection wavelength of 210 nm was chosen in order to achieve a good sensitivity for quantitative determination of Perindopril Eburnine and Amlodipine Besylate in tablet dosage form. The mobile phase consisting of Buffer : Acetonitrile (65:35) with (pH 2.6) with Ortho Phosphoric Acid offered a good separation at ambient temperature under these conditions using a flow rate of 1.0 mL/min and a runtime of 8 min. Perindopril Eburnine elutes at first and then Amlodipine Besylate shown in the chromatogram, In chromatogram first peak(at RT 1.5 min) due to Besylate Salt of Amlodipine is detected due to lower common wavelength selected, which illustrate the separation of both active ingredients in this system. The isocratic program throughout HPLC method was adopted to analyze both components in a single run. The proposed method is simple and do not involve laborious time consuming sample preparation.

Table 2: System Suitability and System Precision

<table>
<thead>
<tr>
<th>Compound</th>
<th>Retention time</th>
<th>N</th>
<th>k'</th>
<th>R</th>
<th>T</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perindopril Eburnine</td>
<td>3.172 ± 0.004</td>
<td>2694.43</td>
<td>30.79</td>
<td>--</td>
<td>1.11</td>
<td>--</td>
</tr>
<tr>
<td>Amlodipine Besylate</td>
<td>5.504 ± 0.000</td>
<td>4457.92</td>
<td>54.04</td>
<td>8.10</td>
<td>1.05</td>
<td>1.755</td>
</tr>
</tbody>
</table>

n= Theoretical plates , k’= Capacity Factor , R= Resolution , T= Asymmetry, α = Selectivity

![Fig 3: Chromatogram of Standard Solution](image1)

![Fig 4: Chromatogram of Sample Solution](image2)
Table 3: Characteristics of the Analytical Method derived from the Standard Calibration Curve

<table>
<thead>
<tr>
<th>Compound</th>
<th>LOD µg/mL</th>
<th>LOQ µg/mL</th>
<th>Linearity range n=(5)</th>
<th>Correlation regression µg/mL</th>
<th>Residual std. σ</th>
<th>Slope of regression S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perindopril Erbumine</td>
<td>0.4</td>
<td>1.2</td>
<td>8.0 to 60.0</td>
<td>0.99995</td>
<td>4634.801</td>
<td>19311.853</td>
</tr>
<tr>
<td>Amlodipine Besylate</td>
<td>0.28</td>
<td>0.84</td>
<td>10.0 to 75.0</td>
<td>0.99994</td>
<td>54560.316</td>
<td>55381.342</td>
</tr>
</tbody>
</table>

LOD= Limit of detection; LOQ= Limit of quantification

Fig 5: Calibration curve of Amlodipine Besylate

Fig 6: Calibration Curve of Perindopril Erbumine

Table 4: Precision results

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration of µg/mL (n=6)</th>
<th>Retention time Mean ± SEM (n=6)</th>
<th>% Assay Mean ± SEM (n=6)</th>
<th>% RSDAssay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perindopril Erbumine</td>
<td>40.4</td>
<td>3.170 ± 0.0000</td>
<td>98.4 ± 0.172</td>
<td>0.4</td>
</tr>
<tr>
<td>Amlodipine Besylate</td>
<td>70.1</td>
<td>5.498 ± 0.0000</td>
<td>100.6 ± 0.107</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 5: Accuracy results

<table>
<thead>
<tr>
<th>Level</th>
<th>Drug Added (mg)</th>
<th>Drug recovered (mg)</th>
<th>% Assay (Mean ± SEM) (n=3)</th>
<th>% RSD of Assay (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Perindopril Erbumine</td>
<td>50%</td>
<td>20.36</td>
<td>20.60</td>
<td>101.7 ± 0.61</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>40.53</td>
<td>40.26</td>
<td>99.8 ± 0.43</td>
</tr>
<tr>
<td></td>
<td>150%</td>
<td>60.37</td>
<td>59.89</td>
<td>99.7 ± 0.20</td>
</tr>
<tr>
<td>For Amlodipine Besylate</td>
<td>50%</td>
<td>25.46</td>
<td>18.59</td>
<td>101.4 ± 0.954</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>50.27</td>
<td>36.46</td>
<td>100.7 ± 0.241</td>
</tr>
<tr>
<td></td>
<td>150%</td>
<td>75.23</td>
<td>54.28</td>
<td>100.1 ± 0.261</td>
</tr>
</tbody>
</table>
4. Conclusion
A simple and elective LC method is described for the determination of Amlodipine and Perindopril in tablet dosage forms. Chromatographic separation was achieved on a C-18 column using mobile phase consisting of a mixture of 80 volumes of methanol and 20 volumes water with detection of 240 nm. Linearity was observed in the range 6-14 µg/ml for Amlodipine (r² =0.998) and 6-14 µg/ml for Perindopril (r² =0.996) for the amount of drug estimated by the proposed methods was in good agreement with the label claim. The proposed methods were validated. The accuracy of the methods was assessed by recovery studies at three different levels. Recovery experiments shows that there is complete absence in the interference from commonly encountered pharmaceutical additives. The methods was found to be precise as indicated by the repeatability analysis, showing %RSD less than 2. All statistical data proves validity of the methods and can be used for routine analysis of pharmaceutical dosage form.

Conflict of Interest: We declare no conflict of interest.

5. References

