Evaluation of Hepatoprotective activity of aqueous extract of *Polycarpea corymbosa* on D-Galactosamine-induced hepatotoxicity in rats

D. Shavika*, Preethi C

Department of Pharmacology, Teegala Krishna Reddy College of Pharmacy, Meerpet, Saroornagar, Hyderabad-500 097

A B S T R A C T

Hepatoprotective activity of *polycarpea corbosa* Linn. Whole plant aqueous Extract- Shade dried and coarsely powdered plant (1 kg) was extracted successively with decocted in purified boiling water in the ratio of 1:9. Polyherbal formulation (Liv-52, 500mg/kg) and Silmarin (25 mg/kg), were evaluated for hepatoprotective activity using D-Galactosamine (D-GalN) induced hepatotoxicity in rats. The parameters assessed were serum levels of Serum Glutamic Oxaloacetate Trasaminase (SGOT), Serum Glutamic Pyruvate (SGPT), Trasaminase (SGOT), Alkaline Phosphatase (ALP), total protein, albumin, globulin, total cholesterol, total bilirubin and blood sugar changes in liver. Test drug also shown to suppress MDA and improved the antioxidant enzymes (superoxide dismutase, catalase, Glutathione peroxidise) and GSH levels. The treatmant with aqueous extract (500mg/kg), has shown to significantly reversed the biochemical changes induced by D-Galactosamine in rats, which is comparable to standard herbal formulation, Liv-52 and silymarin at the employed doses, which evidencing the promising potential of aquoes extract of *polycarpea corbosa* Linn for hepatoprotective activity. **Keywords:** Polycarpea carbosa Linn. Polyherbal formulation Liv-52, Hepatoprotective activity, D-Galactosamine (D-GalN)-induced hepatic damage.

A R T I C L E I N F O

CONTENTS

1. Introduction .. 344
2. Materials and Methods ... 345
3. Results and discussion ... 346
4. Conclusion .. 348
5. References .. 348

Article History: Received 05 October 2016, Accepted 14 November 2016, Available Online 10 December 2016

Corresponding Author
D. Shavika
Department of Pharmacology, Teegala Krishna Reddy College of Pharmacy, Meerpet, Saroornagar, Hyderabad-500 097
Manuscript ID: IJMPR3273

Copyright© 2016 D. Shavika. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Liver is the largest internal organ, weighing approximately about 1.36 kg, in human body and is very much essential for survival. It is the principle organ for maintaining the body’s internal environment (Sumeet Dwivedi., 2008). It is
involved with almost the biochemical pathways related to growth, fight against disease, nutrient supply, energy production and reproduction. Because of its major metabolic activity and relationship to the gastrointestinal tract, the liver is an important target organ victimized by toxic drugs, xenobiotics and oxidative stress (Harmut et al., 2002). More than 900 drugs, toxins and herbs have been reported to cause liver injury and drugs for 20% - 40% of all instance of fulminant liver failure.

The use of natural remedies for the treatment of liver diseases has a long history, starting with the Ayurvedic treatment, and extending to the Chinese, European and other system of traditional medicine. The 21st century has seen a paradigm shift towards therapeutic evaluation of herbal Products in the liver diseases by carefully synergizing the strengths of the traditional systems of medicine with that of the modern concept of evidence-based medicinal evaluation, standardization of herbal products and randomised placebo controlled clinical trials to support clinical efficacy (Thyagarajan et al., 2008). Inspite of tremendous advances in modern medicine, no effective drugs are available that stimulate liver function and offer protection to the liver from the damage or help to regenerate hepatic cells (Chattopaddhhyay et al., 2003).

At present, a large number of herbal medicinal preparations are recommended for the treatment of liver disorders and quite often claimed to offer significant relief. Prevention is first care better than cure to reduce hepatotoxicity with growing interest in herbal therapy. Liv.52, a polyherbal Ayurvedic formulation available in a tablet form and shown to exhibits hepatoprotective function when tested against D-Galactosamine treated rats, through suppression of GSH and improvement of antioxidant enzymes (superoxide dismutase, catalase, Glutathione peroxidise) levels. We have to find the new herbal drug which can be used for hepatoprotective with more efficacy and least side effects. *Polycarpea corymbosa* belonging to Caryophyllaceaes is a small subdeciduous tree grown wild and cultivated in many parts of the India. Leaves of *Polycarpea corymbosa* has anti-inflammatory activity and used in the treatment of jaundice. The whole plant is used for the treatment of swelling, urinary calculi, strangury ulcers and hepatoprotective activity (madhava shetty et al., 2004).

2. Materials and Methods

Collection of the plant material:
It is found throughout the greater part of India, pantropical deciduous forests ascending up to 2100 m in the Himalayas and commonly distributed by the waysides and exposed slopes on the hill all over the Chittor district. S.V.U. Botanical garden, Tirupathi (madhavashetty et al., 2004).

Extraction: The plant material of *Polycarpea corymbosa* was obtained from the Tirumala hills. The shade dried whole plant of *Polycarpea corymbosa* was finely powdered. The fine powder was decocted in purified boiling water in the ratio of 1:9. The decoction was then filtered, weight /ml. This is considered as aqueous extract of *polycarpia corymbosa* (AEPC).
3. Results and Discussion

Preliminary phytochemical screening

Preliminary phytochemical screening of the plant extract revealed the presence of alkaloids, tannins carbohydrates.

<table>
<thead>
<tr>
<th>Chemical test</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>Positive</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Positive</td>
</tr>
<tr>
<td>Phytosterols</td>
<td>Negative</td>
</tr>
<tr>
<td>Glycosides</td>
<td>Negative</td>
</tr>
<tr>
<td>Tannins</td>
<td>Positive</td>
</tr>
<tr>
<td>Resins</td>
<td>Negative</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>Negative</td>
</tr>
</tbody>
</table>

Acute toxicity studies:
The Acute toxicity studies were performed for extracts of selected plant according to the toxic classic method as per guidelines. None of these extracts showed mortality at highest dose of 5000 mg/kg and therefore considered safe.

Effect of *P. corymbosa* on elevated serum biochemical parameters-induced by D-galactosamine in rats

There was drastic and significant increase in the SGOT, SGPT, serum total bilirubin levels in the D-Galactosamine group, when compared to the normal group. However, treatment with silymarin and Liv-52 significantly decrease the biochemical markers, as compared to D-Galactosamine group. The result was same with that of both the test and herbal standard group suggesting the healing of damaged hepatocytes and stability of bilary function, by the aqueous extract. (Table 2).

The effect on serum total protein (TP) and serum total cholester (TC): There was significant reduction in the serum TP Level, while, serum TC levels were significantly rised in D-Galactosamine group, compared to normal group. However, treatment with silymarin, Test and herbal standard have significant reversed the pathological changes observed in D-Galactosamine control group, which probably suggesting that an improvement of regeneration process of the Liver. (Table 2)

Effect of *P. corymbosa* on elevated serum biochemical parameters-induced by D-galactosamine in rats

There was drastic and significant increase in the SGOT, SGPT, serum total bilirubin levels in the D-Galactosamine group, when compared to the normal group. However, treatment with silymarin and Liv-52 significantly decrease the biochemical markers, as compared to D-Galactosamine group. The result was same with that of both the test and herbal standard group suggesting the healing of damaged hepatocytes and stability of bilary function, by the aqueous extract. (Table 2).

The effect on serum total protein (TP) and serum total cholester (TC): There was significant reduction in the serum TP Level, while, serum TC levels were significantly rised in D-Galactosamine group, compared to normal group. However, treatment with silymarin, Test and herbal standard have significant reversed the pathological changes observed in D-Galactosamine control group, which probably suggesting that an improvement of regeneration process of the Liver. (Table 2)
Table 2: Effect of aqueous extracts of *Polycarpea corymbosa* (p.o) on serum biochemical parameters

<table>
<thead>
<tr>
<th>S.No</th>
<th>Group</th>
<th>SGOT (IU/L)</th>
<th>SGPT (IU/L)</th>
<th>TB (mg/dl)</th>
<th>TP (gm/%)</th>
<th>TC mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group-1</td>
<td>98.65±4.642</td>
<td>87.73±4.93</td>
<td>0.042±0.004*</td>
<td>0.69±0.0532</td>
<td>29±6.590</td>
</tr>
<tr>
<td>2</td>
<td>Group-2</td>
<td>472.98±5.657</td>
<td>320.67±6.32*</td>
<td>0.094±0.004*</td>
<td>0.45±0.0322*</td>
<td>184.34±9.451*</td>
</tr>
<tr>
<td>3</td>
<td>Group-3</td>
<td>142.87±9.69**</td>
<td>91.52±9.420**</td>
<td>0.053±0.005**</td>
<td>0.976±0.0132**</td>
<td>58.76±6.482**</td>
</tr>
<tr>
<td>4</td>
<td>Group-4</td>
<td>323.65±8.434**</td>
<td>174.54±6.43**</td>
<td>0.082±0.003**</td>
<td>0.590±0.025**</td>
<td>86.67±9.870**</td>
</tr>
<tr>
<td>5</td>
<td>Group-5</td>
<td>195.42±5.76**</td>
<td>114.54±6.432</td>
<td>0.062±0.003**</td>
<td>0.791±0.0043**</td>
<td>69.43±7.543**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM for six observations, *p<0.05, when compared to the normal group**, p<0.05, when compared to the control group, SGOT-serum glutamate oxaloacetate transaminase, SGPT-serum glutamate pyruvate trans aminase, TB-total bilirubin, TP-total protein, TC- total cholesterol

Table 3: Effect of aqueous extracts of *Polycarpea corymbosa* (p.o) on tissue biochemical parameters

<table>
<thead>
<tr>
<th>S.No</th>
<th>Group</th>
<th>SOD (U/mg protein)</th>
<th>CAT (uM H2O consumed/mg protein)</th>
<th>Reduced GSH (ug of GSH / mg protein)</th>
<th>MDA (nM of MDA/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>4±0.50</td>
<td>5.53±0.60</td>
<td>8.64±0.32</td>
<td>0.71±0.07</td>
</tr>
<tr>
<td>2</td>
<td>D-Galactosamine (400 mg/kg.b.w.i.p)</td>
<td>1.32±0.58*</td>
<td>1.03±0.03*</td>
<td>2.34±0.31*</td>
<td>1.89±0.02*</td>
</tr>
<tr>
<td>3</td>
<td>Silymarin (25 mg/kg.b.wt), D-Galactosamine (400 mg/kg.b.w.t,i.p)</td>
<td>7.34±0.54**</td>
<td>7.37±0.53**</td>
<td>6.21±0.59**</td>
<td>0.82±0.07**</td>
</tr>
<tr>
<td>4</td>
<td>Test (500 mg/kg.b.wt) + Galactosamine (400 mg/kg.b.wt,i.p)</td>
<td>2.45±0.07**</td>
<td>1.67±0.90**</td>
<td>3.85±0.01**</td>
<td>1.20±0.8**</td>
</tr>
<tr>
<td>5</td>
<td>Liv-52 (500 mg .k.b.wt+) Galactosamine (400 mg/kg.b.w.t,i.p)</td>
<td>4.761±0.05**</td>
<td>5.67±0.43**</td>
<td>4.63±0.54**</td>
<td>0.01±0.09**</td>
</tr>
</tbody>
</table>

Values are mean ± SEM for six observations, *p<0.05, when compared to the normal group, **, p<0.05, when compared to the control group, SOD: superoxide dismutase, CAT: Catalase, GSH: Glutathione, MDA: Malondialdehyde.

Discussion

Liver plays a major role in detoxification and excretion of many endogenous and exogenous compounds, any injury or impairment of its function may lead to several Implications on one’s health. Management of liver diseases is still a challenge to modern medicine (Handa, 1991; Kirtikar et al., 1995). Conventional drugs used in the treatment of liver diseases are often inadequate. It is therefore necessary to search alternative drugs of doubtful efficacy and safety. Morbidity and mortality resulting from chronic liver diseases such as cirrhosis is a one of the major health problem (Meena et al., 2008). The use of rats as experimental animals for hepatoprotective activity is mainly because of the structural homology of rat TNF (Burke et al., 1994). Exogenous administration of D-Galactosamine has been found to induce liver damage, which closely resembles human viral hepatitis (Taniguchi H et al., 2004 and Decker K and Kepler D, 1972). The toxicity of D-Galactosamine results from inhibition of RNA and protein synthesis in the liver (Endo Y et al., 1992 and Manabe A et al., 1996). The metabolism of D -Galactosamine may deplete several uracil nu-cleotides including UDP-glucose, UDP Galactose and UTP (Tsai CC et al., 1997) which are trapped in the formation of uridine-diphospho-galactosamine. Accumulation of UDP-sugar nucleotides (Mitra SK et al., 1998) may contribute to the changes in the rough Galactosamination of membrane structures is thought to be responsible for loss in the activity of ionic pumps. The impairment in the calcium pump, with consequent increase in the intracellular calcium is considered to be responsible for cell death.

An evidence of hepatic injury is leakage of cellular enzymes into the plasma. When liver cell plasma membrane is damaged, a variety of enzymes normally located in the cytosol are released into the blood stream. Their estimation in the serum is a useful quantitative marker of the extent and type of hepatocellular damage. The acute toxicity study revealed the absence of lethality among the tested animals when the extract P.O was asingle dose (5,50,300 and 5000mg/kg). There were no signs of any gross behavioural changes at a dose of 500 mg/kg.

Administration of hepatotoxins D-Galactosamine elevated the serum levels of SGOT, SGPT, ALP, TB and TC. As well as decreases total serum proteins (TP) significantly. The rise in serum enzymes level and bilirubin has been attributed to the damaged structural integrity of the liver, because they are cytoplasmic in location and released into...
circulation after cellular damages. Test drug also shown to suppress MDA and improved the antioxidant enzymes (superoxide dismutase, catalase, Glutathione peroxidise) and GSH levels. The treatment with aqueous extract (500mg/kg),has shown to significantly reversed the biochemical changes induced by D-Galactosamine in rats, which is comparable to standard herbal formaluation, Liv-52 and silymarin at the employed doses, which evidencing the promising potential of aqueous extract of Polycarpia corymbosa Linn for hepatoprotective activity.

4. Conclusion
It clearly indicates that the plant Polycarpia corymbosa has the moderate hepatoprotective activity. The activity of the extract is due to the chemical constituents present in it. Phytoconstituents like alkaloids (Vijayan et al., 2003), tannins are possess hepatoprotective activity. Along with these, the oxidants and prooxidants in our plant might be responsible for its hepatoprotective activity.

5. References