Antioxidant and Antimicrobial Activity of Grape Skin

Ms. Sneha V & Dr. V. Judia Harriet Sumathy

Postgraduate & Research Department of Biotechnology, Women’s Christian College, Chennai – 600 006.

A B S T R A C T
Grape (Vitis vinifera) skins and seeds are considered to be rich sources of poly-phenolic compounds. Using the sap of grapevines, European folk healers sought to cure skin and eye diseases. Other historical uses include the leaves being used to stop bleeding, pain and inflammation of hemorrhoids. Resveratrol is found in widely varying amounts among grape varieties, primarily in their skins and seeds, which, in muscadine grapes, have about one hundred times higher concentration than pulp. Fresh grape skin contains about 50 to 100 micrograms of resveratrol per gram. These grape skin extract compounds are believed to act as anti-mutagenic and antiviral agents. The present study is aimed at extracting skin of red grapes with methanol and perform the phytochemical tests using qualitative analysis. Furthermore Total Phenolic content by Quantitative analysis, Column Chromatography by GC-MS to confirm the secondary metabolites for skin, Antioxidant activity by DPPH, Hydrogen Peroxide and Total antioxidant capacity and Antibacterial activity for grape skin would be assessed.

Keywords: Grape skin, Resveratrol, Phytochemical Analysis, Antioxidant and Antimicrobial Property.

A R T I C L E I N F O

CONTENTS
1. Introduction .. 559
2. Materials and Method. .. 560
3. Results and Discussion. .. 561
4. Conclusion. .. 561
5. References .. 562

Article History: Received 15 September 2016, Accepted 19 October 2016, Available Online 27 November 2016

*Corresponding Author
Dr. V. Judia Harriet Sumathy
Postgraduate & Research
Department of Biotechnology, Women’s
Christian College, Chennai – 600 006.
Manuscript ID: IJCP33166

Copyright © 2016 V. Judia Harriet Sumathy, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

1. Introduction
Peltophorum pterocarpum (DC.) K. Heyne is a common deciduous tree grown in tropical countries. Different parts of this tree are used to treat diseases like stomatitis, insomnia, skin troubles, constipation, and ringworm. Its
bark is used as medicine for dysentery, as eye lotion, embrocating for pains and sores. The traditional healers use the leaves in the form of decoction for treating skin disorders. A Research study conducted by extracting carotenoid pigments using Column Chromatography showed antibacterial activity against Staphylococcus aureus, Enterobacter sp. Streptococcus sp.and Escherichia coli whereas the crude leaf and flower extracts showed antibacterial activity against Staphylococcus aureus, Enterobacter sp., Streptococcus sp., Salmonella paratyphi and Escherichia coli (Jean Tony Amalya and Judia Harriet Sumathy, V, 2015).

Hibiscus rosasinensis L. on the other hand is widely cultivated in the tropics as an ornamental plant. It has been reported that the hypoglycemic activity of this extract is not mediated through insulin release and this increases the potential use of this species for human health purposes (Nengguo Tao et al., 2010). Moreover, there is very important evidence of the anticancer action of hibiscus extract against the tumor promotion stage of cancer development, in mouse skin with ultraviolet radiation (Sharma S et al., 2004). Ancient Indian medicinal literature reported that the flowers of hibiscus have beneficial effects in heart diseases, mainly in myocardial ischemic disease, due to its enhancement of the myocardial endogenous antioxidants y an adaptive response towards it without producing any cytotoxic effect (Gauthaman K.K et al.,2006) (Figure 1).

![Dried Flowers samples](image)

Figure 1: Dried Flowers samples

Carotenoids

Carotenoids are important in human health. Carotene plays an essential role as sources of vitamin A. The most active role is protection against serious disorders such as cancer, heart diseases and degenerative eye diseases. It is an antioxidant and acts as regulators of the immune system. Carotenoids are a class of hydrocarbon (carotene) and their oxygenated derivatives (xanthophyls). In mammals, such as humans and monkeys, the most important metabolic products of carotenoids are the retinoids, including vitamin A and retinal. It was demonstrated that the conversion of vitamin A from β-carotene could occur either by central or by eccentric cleavage of β carotene. α-carotene, β-carotene and β-cryptoxanthin can be converted to retinal or vitamin A in the intestine and liver by the enzyme 15-151 β-carotenoid dioxygenase (Joanna Fiedor and Kvetoslva Burda, 2014). Such in vivo formation of retinal appears to be homeostatically controlled, such that conversion to retinol is limited in persons having adequate vitamin A. Age-related muscular degeneration (ARMD) associated with ageing can lead to a total blindness in healthy people.

(C. D. E. Okwu, 2008). Carotenoids are known to suppress the growths of tumors in in vitro (test tube) and in vivo (animal) studies (S. Sonia, K., et. al., 2007). The various carotenoids such as lycopene, β-carotene, α-carotene, lutein and canthaxanthin can decrease malignant transformation of cells. There have been positive reports on dietary carotenoids improving fertility or reproduction capacity in a number of animals (A. Bendich, 1989). Carotenoids besides the anticancerous effect, showed a strong antioxidant character, which plays an important role in the prevention and treatment of cardiovascular, ophthalmological, dermatological diseases and prevents the oxidative damages that are specific to ageing phenomena and also prevents the immunological disorders (P.M.Dey and J.B.Haarborne, 1997). Due to carotenoids great sensitivity to light, heat, oxygen, acids, their isolation from different raw materials must be accomplished choosing the optimal work conditions to gum up their degradation (Delia -Gabriela Dumbravă et. al., 2010).

The present study is aimed at isolating carotenoid pigments from various Flowers such as Copper pod, Yellow bell, Hibiscus and Red jungle flame which are rich in beta carotene and to evaluate their applications in various fields of medical sciences.

2. Materials and Methods

Samples Used In The Present Study Are As Follows

- Yellow bell (Tecoma stans (L.) Juss.ex Kunth.)
- Red jungle flame (Ixora Coccinea L.)
- Copper pod (Peltophorum pterocarpum (DC.) K.Heyne.)
- Hibiscus (Hibiscus rosasinensis L.)

Preparation of Extracts

The Flowers were collected and dried in shade for few weeks. The dried samples were ground into powder. 5gm of the dried sample powder was weighed and immersed in 50 ml of the solvents – Ethanol, Ethyl acetate and Chloroform for 48 hours. After 48 hours, the extracts were filtered. The filtrates were used for further phytochemical analysis which includes Test for Carbohydrates, Proteins, Glycosides, Tannins, Alkaloids, Flavonoids, Terpenoids, Saponins, Resins, Quinones, Cardiac Glycosides, Coumarins, Steroids, Phytosteroids, Phenols, Anthraquinones and Phlobotannins. The carotenoid pigments were isolated using Column Chromatography and was quantified using the formula

\[
\text{Total carotenoid content (g/g) = A x V (ml) x 10^4 / A_{\text{10 cm}} x W (g)}
\]

Where A is the absorbance of the carotenoid pigment at 450 nm, V is the total extract volume, A_{10 cm} is the absorption coefficient of β carotene in hexane (2600), W is the sample weight. The samples were further subjected to Thin Layer Chromatography. The antioxidant studies using Reducing Power assay and Phosphomolybdenum methods and the Antimicrobial studies were carried out.

Antimicrobial Activity of the Extracts

The antimicrobial contents present in the flower extracts and the carotenoid extracts are allowed to diffuse out into the medium and interact in a plate freshly seeded with the
test organisms. The resulting zones of inhibition will be uniformly circular as there will be a confluent lawn of growth. The diameter of zone of inhibition can be measured in millimeters. Muller Hinton Agar Medium, 24 hour bacterial cultures, Sterile Petri plate, Gel puncturing machine and Plant extracts are the materials required.

Preparation of Media
1. Nutrient Broth (1L)
One litre of nutrient broth was prepared by dissolving 13 g of commercially available nutrient medium (Hi Media) in 1000ml distilled water and boiled to dissolve the medium completely. The medium was dispensed as desired and sterilized by auto claving at 15 lbs pressure (121°C) for 15 minutes. The broth was cooled to room temperature after sterilizing and then the bacterial cultures were inoculated in them. The cultures were incubated for 24 hours in a shaker at 37°C.

2. Muller Hinton Agar Medium (1L)
The medium was prepared by dissolving 33.9 g of the commercially available Muller Hinton Agar Medium (Hi Media) in 1000ml of distilled water. The dissolved medium was autoclaved at 15 lbs pressure at 121°C for 15 minutes. The autoclaved medium was mixed well and poured onto 100 mm petriplates (25-30ml/plate) while still molten. Petri plates containing 20ml Muller Hinton medium were seeded with 24hr culture of bacteria strain. Wells were made in each of these plates using sterile cork borer. About 100 µl and 75 µl of 100mg/ml concentrations of flower solvent extracts and carotenoid extracts were added into the wells and allowed to diffuse. The plates were then incubated at 37°C for 24 hours. The antibacterial activity was assayed by measuring the diameter of the inhibition zone formed around the well.

3. Results and Discussions
Isolation of Carotenoid Pigments by Column Chromatography:

Carotenoid pigments were effectively separated from the sample extracts separately in a silica gel column with 100% hexane. The yellow colour band which gets separated when eluted with 100% hexane is identified to be carotenoid pigments (Figure 2). The carotenoid pigments eluted with hexane was collected and stored in vials at -20°C.

Quantification of Carotenoids
The total carotenoid content quantified are as follows:
- Total carotenoid content in copper pod = 0.232x10x10^4 / 2600x10 = 0.89 µg/g.
- Total carotenoid content in red jungle flame = 0.242x10x10^4 / 2600x10 = 0.93 µg/g.
- Total carotenoid content in yellow bell = 0.258x10x10^4 / 2600x10 = 0.99 µg/g.
- Total carotenoid content in hibiscus = 0.237x10x10^4 / 2600x10 = 0.91 µg/g.

Thin Layer Chromatography
The crude extracts and the purified carotenoid pigments and the standard were subjected to thin layer chromatography. The standard used was beta carotene. The mobile phase used was hexane and acetone in the ratio 6:4. The respective Rf values for the Flowers (Copper pod, Yellow bells, Hibiscus and Red jungle flame) were calculated (Table 1).

Antimicrobial Activity of the Extracts
The antimicrobial activity of the Ethanol, Ethyl acetate and Chloroform crude extracts of the samples includes flowers (Copper pod, Yellow bell, Hibiscus and Red jungle flame) and their respective isolated carotenoid pigments from each sample were studied against organisms namely Staphylococcus aureus and Escherichia coli. The concentration of the each extracts used were 100µg/ml and they were studied using different µl change 100µl and 75µl of each sample extracts. Over all the extracts of sample of three different solvent showed antimicrobial activity against both Staphylococcus aureus and Escherichia coli (Table 2). Particularly the Ethanolic crude extract and the Ethyl acetate crude extract of all the flowers extract showed antimicrobial activity against both Staphylococcus aureus and Escherichia coli (Table 2). But the chloroform crude extracts of flowers (except Copper pod) showed antimicrobial activity against both Staphylococcus aureus and Escherichia coli (Figure 3 – 5). The Carotenoid pigment extracted from the flowers showed maximum antimicrobial activity against Staphylococcus aureus only. The activity was determined by measuring the zone of inhibition in mm.

4. Conclusion
Thus the present study reveals the Flowers, Copper pod and Yellow Bell to be the best and is highly recommended for its use as an effective antimicrobial compound. The antimicrobial activity of the crude extracts could be attributed to the presence of metabolic toxins or broad spectrum antibiotic compounds. Furthermore the carotenoid pigments can also be used as a natural alternative to chemical in preservation of food.
Figure 4: Antimicrobial Activity of Ethyl acetate Crude Extract against organism

Figure 5: Antimicrobial Activity of Chloroform Crude Extract against organism

Table 1: Rf Values of Crude Extract and Carotenoid Sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ethanol crude</th>
<th>Ethyl acetate crude</th>
<th>Chloroform crude</th>
<th>Carotenoid pigment</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPPER POD</td>
<td>0.91</td>
<td>0.95</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>YELLOW BELL</td>
<td>0.91</td>
<td>0.95</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>HIBISCUS</td>
<td>0.97</td>
<td>0.97</td>
<td>0.95</td>
<td>0.94</td>
</tr>
<tr>
<td>RED JUNGLE FLAME</td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Table 2: Zone of Inhibition In mm

<table>
<thead>
<tr>
<th>Sample</th>
<th>STAPH 100µl</th>
<th>E.Coli 100µl</th>
<th>STAPH 100µl</th>
<th>E.Coli 100µl</th>
<th>STAPH 100µl</th>
<th>E.Coli 100µl</th>
<th>STAPH 100µl</th>
<th>E.Coli 100µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper POD</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Yellow Bell</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Red jungle</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Hibiscus</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

5. References

