Degradation Impurities in Linagliptin Drug Product

Naresh Akkinaa, Bala Narasimha Reddy Gonaa, B. Venkateswara Raob, Paul Douglas Sanasib, Sukumar Nandia

aDepartment of Chemical Research and Development, Aurobindo Pharma limited, Survey No. 71 & 72, Indrakaran Village, Sangareddy Mandal, Medak District - 502 329, Telangana, India.
bDepartment of Engineering Chemistry, A.U. College of Engineering, Andhra University, Visakhapatnam-530003, Andhra Pradesh, India.

\textbf{A B S T R A C T}

Three degradation impurities related to Linagliptin (1) drug product, N-Acetyl Linagliptin (2), N-Aminoacyl Linagliptin (3) and N-Formyl Linagliptin (4) have been synthetically prepared and characterized. These impurities form due to interaction of excipient and active pharmaceutical ingredient (API) during formulation. Formation of above drug product degradation impurities has been investigated.

\textbf{Keywords}: Linagliptin, excipient, drug product, degradation, impurities

\textbf{A R T I C L E I N F O}

\textbf{CONTENTS}

1. Introduction .. 479
2. Experimental ... 480
3. Results and Discussion. ... 480
4. Conclusion ... 482
5. Acknowledgement ... 482
6. References .. 482

\textbf{Article History:} Received 25 May 2016, Accepted 19 July 2016, Available Online 27 September 2016

\textbf{Corresponding Author}
Dr. Sukumar Nandi,
Department of Chemical Research and Development, Aurobindo Pharma limited,
Survey No. 71 & 72, Sangareddy,
Medak - 502 329, Telangana, India.
Manuscript ID: IJCPS3101

Copyright\textcopyright 2016 Dr. Sukumar Nandi, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

\textbf{1. Introduction}

Degradation products in drug product formulations are sought to be tightly controlled by pharmaceutical industries. Depending upon the drug’s maximum daily dose, regulatory guidelines require the characterization and toxicological evaluation of degradation impurities. Drug degradation of products is generated by interaction of many
2. Experimental

Reagents

Acetyl chloride, triethyl amine, acetic anhydride, Formic acid and urea were used as raw materials. Linagliptin used for the preparation of impurities was prepared as per the literature reported method. Dichloromethane, hexanes and ethanol were used as solvents to carry out the reaction and for crystallization of the product. All the above solvents were purified by the reported procedures [8].

Instrumentation

Melting points are measured in Polmon MP96 capillary melting point apparatus and are uncorrected. The 1H NMR spectra was recorded in Varian 500 MHz FT NMR spectrometer in DMSO-d$_6$. The chemical shifts were reported in ppm relative to TMS (δ 0.00 ppm) as internal standard. IR spectra were recorded on a Perkin-Elmer FT-IR instrument (KBr pellet method). Mass spectra were recorded using a 4000-Q-trap LC-MS/MS mass spectrometer. The solvents and reagents were used without further purification. Chromatographic purity of impurities was analyzed qualitatively by HPLC.

Experimental procedure (Material Synthesis)

Preparation of (R)-N-[1-[7-(But-2-yn-1-yl)-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl]piperidine-3-yl]formamide [N-Acetyl Linagliptin] (2): Linagliptin (2 g, 0.004 mole) was dissolved in methylene chloride (20 ml) at 20-30°C. It was cooled to 0-5°C and triethylamine (0.65 g, 0.006 mol) was added slowly over a period of 15 min. To the above stirred solution, acetyl chloride (0.4 g, 0.005 mol) was added slowly over a period of 10 min at 0-5°C. The reaction mass was stirred at 0-5°C for 1 h and quenched by adding ice-cold water (20 ml). Temperature was raised to room temperature. The organic layer was separated and washed with aqueous sodium chloride solution (20 ml, ~10% w/w). The washed methylene chloride layer was concentrated at 40-45°C to obtain the product.

The concentrated mass was crystallized from hexanes and filtered. It was dried at 40-45°C under reduced pressure of ~20 mm Hg. Yield: 2.2 g. A pale yellow powder (Hexanes); M.P.: 208-209°C; IR (KBr): 3690, 2931, 2410, 2126, 1550, 1265 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$): δ (ppm): 1.71-1.88 (m, 4H), 1.80 (s, 3H), 2.02 (s, 3H), 2.88 (s, 3H), 3.31-3.73 (m, 4H), 3.74 (s, 3H), 4.17 (m, 1H), 4.85 & 4.94 (ABq, 2H), 5.56 (s, 2H), 6.77 (d, 1H), 7.52 (dd, 1H), 7.76 (dd, 1H), 7.87 (d, 1H), 8.01 (d, 1H); Mass (PE SCIEX-API 2000) ESI in +ve ion mode: m/z; 516 [M+H]$^+$. The product was purified by the reported procedures [8].

Preparation of (R)-N-[1-[7-(But-2-yn-1-yl)-3-methyl-1-[(4-methylquinazolin-2-yl)methyl]-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl]piperidine-3-yl]formamide [N-Formyl Linagliptin] (4): Formic acid (5.85 g, 0.127 mol) was added slowly to acetic anhydride (10.8 g, 0.105 mol) at 20-30°C slowly over a period of ~30 min under nitrogen atmosphere. The mixture was heated to 40-45°C and stirred for 1 h. Thereafter, it was cooled to 18-20°C and Linagliptin (5 g, 0.010 mol) was added. The reaction mass was stirred at room temperature for one hour. The progress of the reaction was monitored by checking TLC. After completion of the reaction, it was quenched by adding 100 ml of DM water. It was stirred for 20-30 min at room temperature. Ethyl acetate (50 ml) was added to it and stirred for another 20 min during which product was precipitated out. It was filtered and washed with water (25 ml). The product was dried at 40-45°C under reduced pressure of ~20 mm Hg to constant weight. Yield: 4 g.

Light brown powder (ethyl acetate); M.P.: 176-179°C; IR (KBr): 3265, 2941, 1699, 1661, 1567, 1519 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$): δ (ppm): 1.73-1.86 (m, 4H), 1.79 (s, 3H), 2.88 (s, 3H), 2.89-3.54 (m, 4H), 3.55 (s, 3H), 4.26 (m, 1H), 4.82 and 4.94 (ABq, 2H), 5.55 (s, 2H), 6.93 (d, 1H), 7.51 (t, 1H), 7.75 (t, 1H), 7.85 (d, 1H), 8.0 (d, 1H), 8.18 (s, 1H). Mass (PE SCIEX-API 2000) ESI in +ve ion mode: m/z; 501 [M+H]$^+$. The product was purified by the reported procedures [8].

3. Results and Discussion

Linagliptin (1), trade names Trajenta (USA) and Trajenta (worldwide) is a DPP-4 inhibitor developed by Boehringer Ingelheim for treatment of type II diabetes. Linagliptin (once-daily) was approved by the U.S. Food and Drug Administration (FDA) on 2 May 2011 for treatment of type II diabetes [9]. Linagliptin drug substance (1), having the following chemical structure contains a reactive primary amino group.
Three of the major degradation impurities which need to be monitored in Linagliptin drug product are N-Acetyl Linagliptin (2), N-Aminoacyl Linagliptin (3) and N-Formyl Linagliptin (4), having following chemical structures.

N-Acetyl Linagliptin (2):

Many often a time, acetic acid is generated due to degradation of excipient used during formulation process of APIs. Acetic acid, which generates due to degradation of excipient, may undergo nucleophilic attack by reactive primary amino group present in Linagliptin, resulting in the formation of N-Acetyl Linagliptin impurity (2).

To prepare authentic N-Acetyl Linagliptin impurity, an independent synthesis was carried out by reacting Linagliptin drug substance with acetyl chloride in the presence of triethyl amine as base (scheme 1). This reaction yielded N-Acetyl Linagliptin almost quantitatively. N-Acetyl Linagliptin (2) prepared through above process is characterized by 1H NMR, IR and Mass spectroscopy. The detail of these characterization data for N-Acetyl Linagliptin (2) has been given in the experimental section.

N-Aminoacyl Linagliptin (3):

Quite frequently, formulation of APIs is carried out using starch containing urea as one of the excipient. (R)-1-Methyl-1-[3-phenyl-3-(o-toloyoxy) propyl] urea [atomoxetine N-amide] impurity, which forms due to interaction of excipient with Atomoxetine drug substance, is listed in Atomoxetine hydrochloride USP capsule monograph as one of the degradation product [10]. In a similar way, urea present in excipient may react with primary amino group of Linagliptin giving rise to N-Aminoacyl Linagliptin impurity (3).

N-Aminoacyl Linagliptin (3) was prepared synthetically by reacting Linagliptin with urea in water at higher temperature, as shown in scheme 2. N-Aminoacyl Linagliptin prepared through above process is characterized by 1H NMR, IR and Mass spectroscopy. The detail of these characterization data for N-Aminoacyl Linagliptin has been given in the experimental section.

N-Formyl Linagliptin (4):

Formaldehyde is known degradant of many excipients like polyethylene glycol and polysorbates. Formaldehyde is susceptible to air oxidation and could be partially converted to formic acid. Therefore, excipients having residual formaldehyde are expected to contain some formic acid impurity as well.

Formic acid, which generates due to degradation of excipient, may undergo nucleophilic attack by primary amino group present in Linagliptin, resulting in the formation of N-Formyl Linagliptin impurity (4), as shown below. N-Formyl Linagliptin (4) was prepared synthetically by reacting Linagliptin with a mixture of acetic anhydride and formic acid, as shown in the below synthetic scheme 3.

N-Formyl Linagliptin (4) prepared through above process is characterized by 1H NMR, IR and Mass spectroscopy. The detail of these characterization data for N-Formyl Linagliptin has been given in the experimental section.
4. Conclusion
Reactive impurities in pharmaceutical excipient could cause significant degradation of Linagliptin drug product. In this article, three probable Linagliptin degradation impurities have been discussed. Chemical synthesis of these degradation impurities has been reported. These impurities are of great importance to monitor their presence during formulation process as well as during storage of Linagliptin drug product.

5. Acknowledgement
The authors are thankful to the management of Aurobindo Pharma Ltd., for supporting this work. Co-operation from colleagues of Analytical Research and Development is highly appreciated.

6. References