A Review on Floating Drug Delivery System

Kishore Kamere¹, Gampa Vijay Kumar¹, *S.V. Gopala Krishna²

¹Department of Pharmacy, KGR Institute of Technology and Management, Rampally, Keesara, Rangareddy, Telangana, India-501301
²Vasavi Institute of Pharmaceutical Sciences, Vasavi Nagar, Peddapalli, Madhavaram, YSR Kadapa, A.P, India-516247

ABSTRACT
Recent technological and scientific research has been devoted to the development of rate controlled drug delivery systems to overcome physiological adversities such as short gastric residence times and unpredictable gastric emptying times. The concept behind the development of novel delivery system in certain drawback of conventional dosages form and to overcome the certain aspect related to physicochemical properties of drug molecule and related the formulation development. Controlled release floating drug delivery system is a promising delivery system for a drug candidate having limited absorption window sparingly soluble and insoluble drugs, drugs those locally release in stomach and shows degradability in colon or poor colonic absorption. Floating drug delivery system comes under a gastro-retentive drug delivery system that provides continuous controlled administration of sparingly soluble drugs at the absorption site. This review entitled the detailed scenario related to floating drug delivery system with their advantages over the conventional drug delivery system and also limitation, which are helpful in development of dosages form.

Keywords: physicochemical process, Floating drug delivery system, novel delivery system

ARTICLE INFO

CONTENTS
1. Introduction .. 167
2. Biological Aspects of CRGRDFs 167
3. Factors Affecting Gastric Retention 168
4. Approaches to Gastric Retention 168
5. References .. 169

Article History: Received 19 January 2016, Accepted 21 February 2016, Available Online 15 May 2016

*Corresponding Author
S.V. Gopala Krishna
Vasavi Institute of Pharmaceutical Sciences, Vasavi Nagar, Peddapalli, YSR Kadapa, A.P, India-516247
Manuscript ID: IJCTPR2928

Copyright © 2016 S.V. Gopala Krishna, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
1. Introduction

The oral route is increasingly being used for the delivery of therapeutic agents because of the low cost of the therapy and ease of administration. Controlled-release oral drug delivery systems (CRDDS) provide drug release at a predetermined, predictable and controlled rate. Controlled-release drug delivery systems are capable of achieving the benefits of maintenance of optimum therapeutic drug concentration in blood with predictable and reproducible release rates for extended time period; enhancement of activity of duration for short half-life drugs, elimination of side effects; reducing frequency of dosing and wastage of drugs; optimized therapy and better patient compliance. Oral route is the most popular and convenient route for various drugs. Oral route generally consider an ideal drug delivery system that will possess two main properties:

a. It should be in a single dose for prolonging action.

b. It should be deliver the active drug directly to the target site.

These considerations have led to the development of a controlled or sustained release delivery system. Sustained delivery describes a drug delivery system with delayed and/or prolonged release of drug. The main purpose for developing these systems is to enhance the safety of a product to extend its duration of action. There are many disadvantages of these systems such as longer time to achieve therapeutic blood levels, more variation in bioavailability, enhanced first pass effect, and dose dumping. These systems are usually more expensive than the conventional systems. Since these products are made for the population at large, and not for an individual, they may result in higher or lower steady state drug level in different individuals. If the therapeutic range of drug is broad enough, it may not cause any problem. In spite of their disadvantages, research is continued in this area, as there is much scope to further improve currently available systems.

OCRDDS: Advantages

- Reduced dosing frequency
- Better patient convenience and compliance
- Reduced gastrointestinal (GI) side effects
- Less fluctuating plasma drug levels
- Improved efficacy/safety ratio
- More uniform drug effect
- Lesser total dose

Development of controlled release oral drug delivery system (CRDDS) by overcoming physiological adversities like short gastric residence times and unpredictable gastric emptying times. One of the most feasible approaches for achieving a prolonged and predictable drug delivery in the GI tract is to control the gastric residence time (GRT), i.e. controlled release gastro retentive dosage form (CRGRDFS or GRDDS).

Need for controlled release Gastroretentive Drug Delivery: Dosage form with prolonged GRT, i.e. gastro retentive dosage form (GRDF), will bring about new and important therapeutic options such as6 – This application is especially effective in sparingly soluble and insoluble drugs. It is known that, as the solubility of a drug decreases, the time available for drug dissolution becomes less adequate and thus the transit time becomes a significant factor affecting drug absorption. To override this problem, erodible, gastroretentive dosage forms have been developed that provide continuous, controlled administration of sparingly soluble drugs at the absorption site.

- GRDFs greatly improve the pharmacotherapy of the stomach through local drug release, leading to high drug concentration at the gastric mucosa. (For e.g. Eradicating Helicobacter pylori from the submucosal tissue of stomach) making it possible to treat stomach and duodenal ulcers, gastritis and oesophagitis, reduce the risk of gastric carcinoma and administer non-systemic controlled release antacid formulations (calcium carbonate).
- GRDFs can be used as carriers for drugs with so-called absorption windows. These substances for e.g. antiviral, antifungal and antibiotic agents (sulphonamides, quinolones, penicillins, cephalosporins, aminoglycosides, tetracyclines etc.), are taken up only from very specific sites of the GI mucosa.
- In general, appropriate candidates for controlled release gastroretentive dosages form (CRGRDF) are molecules that have poor colonic absorption but are characterized by better absorption properties at the upper parts of the GIT. Drugs that disturb normal colonic bacteria, e.g., amoxicillin trihydrate.

2. Biological Aspects of CRGRDFs

Stomach Physiology:

The stomach is an expanded section of the digestive tube between the oesophagus and small intestine. The wall of the stomach is structurally similar to the other parts of the digestive tube, with the exception that stomach has an extra, oblique layer of smooth muscle inside the circular layer, which aids in the performance of complex grinding motions. In the empty state, the stomach is contracted and its mucosa and sub mucosa are thrown up into distinct folds called rugae.

Gastric motility:

Gastric motility is controlled by a complex set of neural and hormonal signals. Nervous control originates from the enteric nervous system as well as parasympathetic (predominantly vagus nerve) and sympathetic systems. A large battery of hormones has been shown to influence gastric motility- for e.g. both gastrin and cholecystokinin act to relax the proximal stomach and enhance contractions in the distal stomach.

Gastric empty rate: Gastric emptying occurs during fasting as well as fed states. The pattern of motility is
however distinct in the 2 states. During the fasting state an interdigestive series of electrical events take place, which cycle both through stomach and intestine every 2 to 3 hours. This is called the interdigestive myoelectric cycle or migrating myoelectric cycle (MMC), which is further divided into following 4 phases as described by Wilson and Washington.

3. Factors Affecting Gastric Retention

The gastric retention time (GRT) of dosage form is controlled by several factors that affect their efficacy as a gastro-retentive system.

Density: GRT is a function of dosage form buoyancy that is dependent on the density.

Size: Dosage form units with a diameter of more than 9.5 mm are reported to have an increased GRT. Shape of dosage form: Tetrahedron and ring shaped devices with a flexural modulus of 48 and 22.5 kPa, respectively, are reported to have better GRT. 90% to 100% retention at 24 hours compared with other shapes.

Single or multiple unit formulation:

Multiple unit formulations show a more predictable release profile and insignificant impairing of performance due to failure of units, allow co-administration of units with different release profiles or containing incompatible substances and permit a larger margin of safety against dosage form failure compared with single unit dosage forms.

Fed or unfed state:

Under fasting conditions, the GI motility is characterized by periods of strong motor activity or the migrating myoelectric complex (MMC) that occurs every 1.5 to 2 hours. The MMC sweeps undigested material from the stomach and, if the timing of administration of the formulation coincides with that of the MMC, the GRT of the unit can be expected to be very short. However, in the fed state, MMC is delayed and GRT is considerably longer.

Nature of meal:

Feeding of indigestible polymers or fatty acid salts can change the motility pattern of the stomach to a fed state, thus decreasing the gastric emptying rate and prolonging drug release.

Caloric content: GRT can be increased by four to 10 hours with a meal that is high in proteins and fats.

Frequency of feed: The GRT can increase by over 400 minutes when successive meals are given compared with a single meal due to the low frequency of MMC.

Gender: Mean ambulatory GRT in males 0.6 hours is less compared with their ±(3.4 age and race-matched female counterparts 1.2 hours), regardless of the weight, ±(4.6 height and body surface.

Age: Elderly people, especially those over 70, have a significantly longer GRT.

Posture: GRT can vary between supine and upright ambulatory states of the patient.

Concomitant drug administration:

Anticholinergics like Atropine and Propantheline, Opiates like Codeine and Prokinetic agents like Metoclopramide and Cisapride.

Biological factors: Diabetes and Crohn’s disease.
hr, when immersed in aqueous media. Radio graphical studies proved that microballoons orally administered to human were dispersed in the upper part of stomach and retained there for three hr against peristaltic movements.

(B) Effervescent systems
A drug delivery system can be made to float in the stomach by incorporating a floating chamber, which may be filled with vacuum, air or inert gas.

Volatile liquid containing systems:
These have an inflatable chamber which contains a liquid e.g. ether, cyclopentane, that gasifies at body temperature to cause the inflation of the chamber in the stomach. These systems are osmotically controlled floating systems containing a hollow deformable unit. There are two chambers in the system first contains the drug and the second chamber contains the volatile liquid.

Gas generating systems:
These buoyant delivery systems utilizes effervescent reaction between carbonate/bicarbonate salts and citric/tartaric acid to liberate CO2, which gets entrapped in the jellified hydrocolloid layer of the system, thus decreasing its specific gravity and making it float over chime. A multiple unit type of floating pills, which generate CO2, have also been developed. The system consists of a sustained release (SR) pill as seed, surrounded by double layers. The inner layer is an effervescent layer containing sodium bicarbonate and tartaric acid. The outer layer is of a swell able membrane layer containing PVA, shellac etc. Another effervescent system consisting of a collapsible spring, which controls the release of drug from the polymer matrix, has also been developed. The common approach for preparing these systems involves resin beads loaded with bicarbonate and coated with ethyl cellulose. The coating which is insoluble but permeable, allows permeation of water. Thus, carbon-dioxide is released, causing the beads to float in the stomach.

Advantages of FDDS
Floating dosage systems form important technological drug delivery systems with gastric retentive behavior and offer several advantages in drug delivery. These advantages include:

1. Improved drug absorption, because of increased GRT and more time spent by the dosage form at its absorption site.
2. Controlled delivery of drugs.
3. Delivery of drugs for local action in the stomach.
4. Minimizing the mucosal irritation due to drugs, by drug releasing slowly at controlled rate.
5. Treatment of gastrointestinal disorders such as gastro-esophageal reflux.
6. Simple and conventional equipment for manufacture.
7. Ease of administration and better patient compliance.
8. Site-specific drug delivery

Disadvantages of FDDS
1. Gastric retention is influenced by many factors such as gastric motility, pH and presence of food. These factors are never constant and hence the buoyancy cannot be predicted.

5. References