A Review on Current Scenario of Rheumatoid Arthritis in Health Care Practice

A. Bharath Kumar1*, C. Gopinath1, Sk. Karimulla2, Ramesh Dhani3

1Department of Pharmacy Practice, Annamacharya College of Pharmacy, Rajampet, A.P, India
2Department of Pharmacology, Dr. K.V. Subba Reddy Institute of Pharmacy, Kurnool, Andhra Pradesh, India
3Department of Pharmaceutical Chemistry, Ramatam Institute of Pharmacy, SPSR Nellore, Andhra Pradesh, India

ABSTRACT
It is a chronic inflammatory disorder of joints affects the diarthrodial joints and especially in the fingers, wrists, feet, and ankles. It is known as autoimmune disorder because it affects the immune system. The disease affects fourth and sixth decade of the life. The genetics, infections, vitamin-D deficiency in the bones, smoking has a significant role in progression of the disease. It is a systemic disorder affects the body. The B cells, T cells MHC cells activated when the immune system is days regulated. The symptoms include morning stiffness, rheumatoid nodules formation, systemic arthritis, pain in the fingers, wrists, feet, and ankles extra articular lesions formation cardio myopathy, bone marrow depression, pleural effusion. The diagnosis of the disease includes the presence of rheumatoid factor in the blood. Elevated Erythrocyte sedimentation rate, C reactive proteins rate, blood test, X rays of hand reveals the disease progression. The management of disease includes disease modifying Anti Rheumatoid Drugs, Interleukin antagonist, anti TNF agents, Non-steroidal anti-inflammatory drugs.

Keywords: Arthritis, Disease, Genetics, Immune System.

ARTICLE INFO

CONTENTS
1. Introduction ... 140
2. Pathophysiology .. 141
3. Clinical Presentation ... 142
4. Conclusion ... 143
5. References .. 143

Article History: Received 10 February 2016, Accepted 25 March 2016, Available Online 15 May 2016

*Corresponding Author
A. Bharath Kumar
Department of Pharmacy Practice,
Annamacharya College of Pharmacy,
Rajampet, A.P, India
Manuscript ID: IJCTPR2871

Copyright© 2016 A. Bharath Kumar, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

1. Introduction
It is autoimmune disorder that primarily affects joints. It produces warmness, swelling, and pain in the joints [1]. The disease affects the other parts of the body. The changes in low red blood cells, inflammation around the lungs,
Fever and low energy may also be present. Rheumatoid arthritis (RA) is a chronic disease in which all the joints in the body are inflamed, leading to swelling, pain, stiffness, and loss of function. The symptoms prolong from weeks to months. It is a chronic systemic inflammatory disease of unknown cause. Rheumatoid arthritis is an autoimmune disease in which the body's immune system attacks joints and other tissues. The pattern of joints affected is usually involves the hands and other joints, and pain in the morning. Rheumatoid arthritis is a systemic (body-wide) disease, involving other body organs.

The disease process begins in the synovium the membrane that surrounds a joint and creates a protective sac. This sac is filled with lubricating fluid known as synovial fluid. In addition to cushioning joints, this fluid supplies nutrients and oxygen to cartilage, a slippery tissue that coats the ends of bones. Cartilage is composed of collagen, is the structural protein in the body, which forms a mesh like structure to give support and protection and flexibility to the joints [2].

The inflammation of the synovium. Collagen is gradually destroyed, narrowing the joint space and damaging bone. The pannus produces more enzymes that destroy nearby cartilage, aggravates the area and attracting more inflammatory white cells, thereby perpetuating the process. This inflammatory process not only affects cartilage and bones but can also harm organs in other parts of the body.

Figure 1: Rheumatoid Arthritis

Etiology: Genetics, smoking, alcohol, infections, vitamin D deficiency in the bones, Hyper prolactinemia.

Risk Factors
- **Age:** onset begins between the ages of 30-50 years.
- **Gender:** Women are more likely to develop RA than men.
- **Family History:** Some people may inherit genes that make them more susceptible to developing RA.
- **Smoking** [3]

Complications of Rheumatoid Arthritis
- Joint Deterioration and Pain

Epidemiology
Worldwide, the annual incidence of RA is approximately 3 cases per 10,000 population, and the prevalence rate is approximately 1%, increasing with age and peaking between the ages of 35 and 50 years. The affecting significance of individuals with RA are at 2- to 3-folds higher risk for the disease [4]. Disease concordance with monozygotic twins is approximately 15-20%. Women are affected by RA approximately 3 times more often than men. It affects 0.3% to 2.3% of the population.

2. Pathophysiology
- Synovial cell hyperplasia and endothelial cell activation are early events in the pathologic process that progresses to uncontrolled inflammation and consequent cartilage and bone destruction [4].
- The Genetic factors and immune system abnormalities contributes to disease propagation. The immune system dys-regulated by entry of pathogenic substances in the body.
- The antigens reacts with anti bodies to form ag-Ab complexes.
- The activation of CD4 T cells, B cells, cytokines [5] plays a major role in the prevention of the inflammatory responses in the body.
- The B cells produce antibodies against the inflammation [6].
- Abnormal production of numerous cytokines, chemokines, and other inflammatory mediators (e.g. tumor necrosis factor alpha [TNF-a], interleukin [IL]-1, IL-6, IL-8, transforming growth factor beta [TGF-β], fibroblast growth factor [FGF], and platelet-derived growth factor [PDGF]).
- It causes the inflammation and proliferation of the synovium. (i.e. pannus)
- It leads to destruction of various tissues, including cartilage (see the image below), bone, tendons, ligaments, and blood vessels by the secretion of collagenase, elastagen, and bone matrix destruction enzymes in the bone marrow.
- The increase secretion of antibodies that forms the auto anti body complexes in the bone matrix and produce the inflammation, destruction of the joints.
3. Clinical Presentation

- Morning stiffness of near joints
- Arthritis in soft tissue swelling, including right or left PIP, MCP, wrist, elbow, MTP, ankle, or knee joints. Rheumatoid nodules, plueral effusions, plueral erosions.
- Malaise, fatigue, weight loss, fever
- Severe motion impairment in radiologic evidence of bone damage.
- Rheumatoid nodules, vasculitis, hematologic abnormalities,
- Bone marrow depression

Table 1: Disease-Modifying Anti-rheumatic Drugs (DMARDS)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methotrexate</td>
<td>7.5-15mg/once weekly</td>
</tr>
<tr>
<td>Hydro chloroquine</td>
<td>500 mg od</td>
</tr>
<tr>
<td>Leflunomide</td>
<td>100 mg od</td>
</tr>
<tr>
<td>Sulfasalazine</td>
<td>500 mg od</td>
</tr>
</tbody>
</table>

Mechanism of action of methotrexate
This metabolite inhibits B- and T-cell proliferation, antibody secretion, and cellular adhesion. Leflunomide's active metabolite inhibits nucleotide (pyrimidine) synthesis through inhibition of dihydro-orotate dehydrogenase.

Adverse effects
Hepatic effects, nausea and/or vomiting, gastrointestinal effects, leukopenia.

Table 2: Tumor Necrosis Factor-α Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adalimumab</td>
<td>30 mg/once weekly</td>
</tr>
<tr>
<td>Etanercept</td>
<td>40 mg/once weekly</td>
</tr>
<tr>
<td>Infliximab</td>
<td>3 mg/once weekly</td>
</tr>
</tbody>
</table>

Mechanism of action
These agents bind TNF-α and then removed by phagocytic cells, leading to a decrease in TNF-α concentrations, binding to receptors, and subsequent actions. TNF-α blockade causes the decreases neutrophil migration into inflamed joints site and diminishes the secretion of IL-1, IL-6, and IL-8, and inhibits cartilage destruction [10].

Table 3: Interleukin-1 Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximunab</td>
<td>30mg</td>
</tr>
<tr>
<td>Anakinra</td>
<td>40mg</td>
</tr>
</tbody>
</table>

Mechanism of action: IL-1 blockade blocks macrophage infiltration in the synovium in patients and inhibits cartilage destruction.

Table 4: Calcineuron Inhibitors

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclosporine</td>
<td>1.5 g od</td>
</tr>
<tr>
<td>Cyclophosphamide</td>
<td>1 g od</td>
</tr>
</tbody>
</table>
Mechanism of action:
These cells cause the inhibit calcineurin and inhibits the bone matrix destruction.

Adverse effects: Nephrotoxicity, hypertension, infection, gingival hyperplasia, hypertrichosis, fatigue, and gastrointestinal and neurologic

Drug interactions: Drugs that enhance (e.g., rifampin, phenytoin) or inhibit (e.g., cimetidine, ketoconazole, ciprofloxacin) CYP3A4 will alter the clearance of cyclosporine. Drugs with renal toxicity may also enhance the renal toxicity of cyclosporine.

Major adverse effects
Major adverse effects include gastrointestinal disturbances, weight loss, allergic reactions, transient elevations of liver transaminases, and reversible alopecia [11].

Azathioprine: 1.0 to 2.5 mg/kg/day, or 50 to 200 mg per day. Azathioprine has a half-life of 0.2 to 1 hour.

Mechanism of azathioprine
Purine inhibition by 6-mercaptopurine inhibits proliferation of lymphocytes and other white blood cells

Adverse effects
1. Severe bone marrow
2. Mycophenolate Mofetil: doses of 1-3 mg per day.

Mechanism: reversible inhibitor of inosine monophosphate dehydrogenase that disrupts the synthesis of guanine nucleotides [12]. MMF appears to inhibit the proliferation of lymphocytes to a greater extent than the proliferation of other cells.

Adverse Effects: Nausea, vomiting, abdominal pain, and diarrhea, are the most common adverse effects. However, bone marrow suppression and liver toxicity have been reported in transplant patients.

Sulfasalazine: Adverse Effect: it includes nausea and/or vomiting, skin rash, liver effects leukopenia, fever, anemia and lung effects

Antimalarials: Hydroxychloroquine is used at doses of 2 to 4 mg per kg or 200 to 400 mg per day orally. [13]

Adverse effects
It includes gastrointestinal tract effects (4.6%), rash (2.3%), ocular problems (0.7%), and, less commonly, leukopenia and central nervous system, neuromuscular, and cardiac effects [14], allergic rashes, hemolytic anemia, and gastrointestinal and neurologic effects.

Nonsteroidal Anti-Inflammatory Drugs
NSAIDs inhibit prostaglandins synthesis and inhibition of cyclooxygenase-enzyme results in inhibits the inflammation.

Table 4: Nonsteroidal Anti-Inflammatory Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>150–200 mg od</td>
</tr>
<tr>
<td>Etodolac</td>
<td>800–1,200 mg od</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>150 mg od</td>
</tr>
<tr>
<td>Piroxicam</td>
<td>10–20 mg od</td>
</tr>
<tr>
<td>Sulindac</td>
<td>300–400 mg od</td>
</tr>
<tr>
<td>Fenoprofen</td>
<td>200–300 mg od</td>
</tr>
<tr>
<td>Flurbiprofen</td>
<td>200–300 mg od</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>200–400 mg od</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>100 mg od</td>
</tr>
<tr>
<td>Valdecoxib</td>
<td>200 mg od</td>
</tr>
</tbody>
</table>

4. Conclusion
The rapid assessment of Rheumatoid arthritis leads to minimize the further complications of the disease. The newer developments in the management of rheumatoid arthritis have made significant approaches to reducing the disease progression and improving outcomes of the patients. The use of biological agents to reduce the disease complications can results in recovery and improving quality of life in patients of rheumatoid arthritis. With the use of medications regular interventions with the patient. Initial diagnosis of the disease and controlling the risk factors exposure we can prevent the disease progression [20].

5. References

