Research Article

Purity of *Cardiospermum Helicacabum* Linn by Using HPLC Technique in Different Solvents

K. Sudhakar Babu¹, V. Krishna Murthy Naik*¹, J. Latha, V. Prabhakar² and K. Ramanjineyulu

¹Department of Chemistry, Sri Krishnadevaraya University, Anantapuramu, A.P, India
²Department of Bio-technology, Sri Krishnadevaraya University College of Engineering & Technology, S.K. University, Anantapuramu–515003, A.P, India

A B S T R A C T

In this study we report the HPLC Purity of *Cardiospermum helicacabum* Linn, extract of different solvents, the purity of the biologically active fractions i.e. methanol, chloroform, ethanol and acetone fractions were determined by using in house developed HPLC method and % purity was reported in the tables 1-4. The corresponding chromatograms The HPLC chemical investigations has resulted in the identification of the chromatogram, together the crude extract of the Cardiospermum helicacabum Linn flow and stop-flow HPLC analyses rapidly assisted in the identification of the major component, as well as to obtain sufficient quantities for biological testing.

Keywords: *Cardiospermum halicacabum* Linn. HPLC, Purity, extract.

A R T I C L E I N F O

CONTENTS

1. Introduction .. 118
2. Experimental .. 119
3. Results and Discussion ... 119
4. Conclusion ... 121
5. Acknowledgement ... 121
6. References .. 121

Article History: Received 05 January 2016, Accepted 09 February 2016, Available Online 27 March 2016

*Corresponding Author
V. Krishna Murthy Naik
Department of Chemistry,
Sri Krishnadevaraya University,
Anantapuramu, A.P, India
Manuscript ID: IJCP2888

Copyright © 2016 V. Krishna Murthy Naik, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Cardiospermum halicacabum Linn., commonly known as Ballon vine, is an important medicinal herb belonging to family Sapindaceae. It is an annual or sometimes perennial climber, found as a weed throughout India, ascending up to 1200 m in the hills. [1] The herb is used as diuretic,
stomachic, rubefacient, in rheumatism, lumbago and nervous disorders and in preparing hair oil for curing dandruff and alopecia. The juice of the herb is used to cure ear ache and asthma. The decoction is administered in piles. The pungent vapors from the crushed leaves are inhaled to relieve headache. The root is mucilaginous and considered emetic, laxative and anti-rheumatic. It is effective in didymitis and early, Stages of hydrocela and is used in asthma and colic. It is useful in amenorrhoea, gonorrhoea, nervous diseases, haemorrhoids and erysipelas. [2-4]

High performance Liquid Chromatography (HPLC):
HPLC is a type of liquid chromatography (Basset et al., 1986; Macek 1972) that employs a liquid mobile phase and a very fine divided stationary phase. In order to obtain satisfactory flow rate liquid must be pressurized to a few thousands of pounds per square inch. The rate of distribution of drugs between stationary and mobile phase is controlled by diffusion process, if diffusion is minimized, a faster and effective separation can be achieved. The technique of high performance liquid chromatography is so called because of its improved performance when compared to classical column chromatography. Advances in column technology, high-pressure pumping system and sensitive detectors have transformed liquid column chromatography into high speed, efficient, accurate and highly resolved method of separation. The HPLC is the method of choice in the field of analytical chemistry, since this specific, robust, linear, precise and accurate and the limit of detection is low and also it offers the following advantages.

- Speed (many analysis can be accomplished in 20 min or less). Greater sensitivity (various detectors can be employed)
- Improved resolution (wide variety of stationary phases)
- Reusable columns (expensive columns but can be used for many analysis)
- Ideal for the substances of low viscosity
- Easy sample recovery, handling and maintenance.
- Instrument leads itself to automation and quantification (less time and less Labour)
- Precise and reproducible
- Integrator itself does calculations.

2. Experimental
Preparation of Plant Extracts:
Petroleum ether extract:
The coarsely powdered shade dried roots of Cardiospermum helicacabum (50g) was extracted with ether by hot extraction process (Soxhlet) for 4 h. After completion of extraction the solvent was removed by distillation and Concentrated.

Methanol extract:
The marc left after the acetone extraction was dried and extracted with 95% ethanol by hot extraction process (Soxhlet) for 4 h. After completion of extraction the solvent was removed by distillation and Concentrated.

Chloroform extract:
The marc left after benzene extraction was dried and extracted with chloroform by hot extraction process (Soxhlet) for 4 h. After completion of extraction the solvent was removed by distillation and Concentrated.

Acetone extract:
The marc left after the extraction of the chloroform extraction was dried and extracted with acetone by hot extraction process (Soxhlet) for 4 h. After completion of extraction the solvent was removed by distillation and Concentrated.

Ethanolic extract:
The marc left after the acetone extraction was dried and extracted with 95% ethanol by hot extraction process (Soxhlet) for 4 h. After completion of extraction the solvent was removed by distillation and Concentrated.

HPLC method development
(Mayer & Varenika 1985):
A good method development strategy should require only as many experimental runs as are necessary to achieve the desired final result. Finally method development should be as simple as possible, and it should allow the use of sophisticated tools such as computer modeling.

- a. The important factors, which are to be taken into account to obtain reliable quantitative analysis, are
- c. Appropriate choice of the column.
- d. Choice of the operating conditions to obtain the adequate resolution of the mixture.
- e. Reliable performance of the recording and data handling systems.
- g. The mode of calculation best suited for the purpose. By using the following chromatographic conditions the purity of all the fractions were determined

Chromatographic conditions:
Column: X Bridge C18 (150mmX4.6mm, 3.5µm)
Mobile Phase: A: 0.05% Formic acid in Acetonitrile
B: 0.05% Formic acid in Water
Gradient: Time/ %A: 0/10, 3/10, 8/90, 14/95, 18/95, 19/10, 20/10
Column Temp: Ambient.
Flow Rate: 1.0 ml/min
Diluent: ACN: H2O (70:30)
Wavelength of detection: 220nm & 254nm

3. Results and Discussion

Purity of the fractions:
The purity of the biologically active fractions i.e. methanol, chloroform, ethanol and acetone fractions were determined by using in house developed HPLC method and % purity was reported in the tables 1-4. The corresponding chromatograms were also shown in the figures 1-4.

Sample information
Sample name: Methanol extract
Date Acquired: 31-12-2014
Injection Volume: 3.00µl
Instrument ID: ANL-MCL3-HPLC-001
Descr: Channel Name 220.00nm, 254.0nm.
Figure 1: Chromatogram showing the Purity of Methanol extract

Table 2: Area and % Areas of Peaks obtained in the HPLC Chromatogram of Methanol extract processed channel: PDA 220.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Retention Time (Min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.71</td>
<td>98.52</td>
<td>27352</td>
<td>97.86</td>
</tr>
<tr>
<td>2</td>
<td>9.92</td>
<td>0.99</td>
<td>46205</td>
<td>1.65</td>
</tr>
<tr>
<td>3</td>
<td>10.68</td>
<td>0.48</td>
<td>13732</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Processed channel: PDA 254.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Retention Time (Min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.32</td>
<td>0.67</td>
<td>13911</td>
<td>0.53</td>
</tr>
<tr>
<td>2</td>
<td>8.61</td>
<td>0.47</td>
<td>12052</td>
<td>0.46</td>
</tr>
<tr>
<td>3</td>
<td>8.95</td>
<td>0.26</td>
<td>593102</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>9.55</td>
<td>0.30</td>
<td>6730</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>10.58</td>
<td>0.37</td>
<td>9351</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Sample information
Sample name: Chloroform extract
Date Acquired: 31-12-2014
Injection Volume: 3.00µl
Instrument ID: ANL-MCL3-HPLC-001
Vial : 3 Proc.Chnl. Descr: Channel Name 220.00nm, 254.0nm

Figure 2: Inhibition of wriths by each treatment

Table 3: Area and % Areas of Peaks obtained in the HPLC Chromatogram of Chloroform extract processed channel: PDA 220.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Retention Time (min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.32</td>
<td>0.67</td>
<td>27970</td>
<td>0.69</td>
</tr>
<tr>
<td>2</td>
<td>8.61</td>
<td>0.33</td>
<td>12798</td>
<td>0.31</td>
</tr>
<tr>
<td>3</td>
<td>8.95</td>
<td>98.13</td>
<td>4006512</td>
<td>98.19</td>
</tr>
<tr>
<td>4</td>
<td>9.48</td>
<td>0.24</td>
<td>9090</td>
<td>0.22</td>
</tr>
<tr>
<td>5</td>
<td>9.55</td>
<td>0.32</td>
<td>11382</td>
<td>0.28</td>
</tr>
<tr>
<td>6</td>
<td>10.58</td>
<td>0.32</td>
<td>12537</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Processed channel: PDA 254.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Retention Time (min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.32</td>
<td>0.58</td>
<td>13911</td>
<td>0.53</td>
</tr>
<tr>
<td>2</td>
<td>8.61</td>
<td>0.47</td>
<td>12052</td>
<td>0.46</td>
</tr>
<tr>
<td>3</td>
<td>8.95</td>
<td>98.00</td>
<td>2593102</td>
<td>98.16</td>
</tr>
<tr>
<td>4</td>
<td>9.48</td>
<td>0.26</td>
<td>6471</td>
<td>0.24</td>
</tr>
<tr>
<td>5</td>
<td>9.55</td>
<td>0.30</td>
<td>6730</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>10.58</td>
<td>0.37</td>
<td>9351</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Sample information
Sample name: Ethanol extract
Date Acquired: 31-12-2014
Injection Volume: 3.00µl
Instrument ID: ANL-MCL3-HPLC-001
Vial : 2 Proc.Chnl. Descr: Channel Name 220.00nm, 254.0nm

Figure 3: Chromatogram showing the Purity of ethanol extract

Table 4: Area and % Areas of Peaks obtained in the HPLC Chromatogram of Ethanol extract processed channel: PDA 220.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.35</td>
<td>0.46</td>
<td>22758</td>
</tr>
<tr>
<td>2</td>
<td>9.48</td>
<td>99.54</td>
<td>4049288</td>
</tr>
</tbody>
</table>

Processed channel: PDA 254.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

Figure 4: Inhibition of wriths by each treatment
<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.83</td>
<td>0.18</td>
<td>4867</td>
</tr>
<tr>
<td>2</td>
<td>9.35</td>
<td>0.50</td>
<td>10436</td>
</tr>
<tr>
<td>3</td>
<td>9.48</td>
<td>99.32</td>
<td>2643864</td>
</tr>
</tbody>
</table>

Figure 4: Chromatogram showing the Purity of Acetone extract

Table 5: Area and % Areas of Peaks obtained in the HPLC Chromatogram of Acetone extract processed channel: PDA 220.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.05</td>
<td>0.23</td>
<td>14409</td>
</tr>
<tr>
<td>2</td>
<td>7.37</td>
<td>99.76</td>
<td>2978246</td>
</tr>
<tr>
<td>3</td>
<td>7.56</td>
<td>0.35</td>
<td>13559</td>
</tr>
<tr>
<td>4</td>
<td>7.66</td>
<td>0.25</td>
<td>7563</td>
</tr>
<tr>
<td>5</td>
<td>9.27</td>
<td>0.41</td>
<td>11924</td>
</tr>
</tbody>
</table>

Processed channel: PDA 254.0 nm (PDA 220.0 to 400.0 nm at 1.2 nm)

<table>
<thead>
<tr>
<th>Retention Time (min)</th>
<th>% Height</th>
<th>Area</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.05</td>
<td>0.24</td>
<td>16380</td>
</tr>
<tr>
<td>2</td>
<td>7.37</td>
<td>99.56</td>
<td>3201639</td>
</tr>
<tr>
<td>3</td>
<td>7.56</td>
<td>0.09</td>
<td>1817</td>
</tr>
<tr>
<td>4</td>
<td>7.65</td>
<td>0.11</td>
<td>2976</td>
</tr>
</tbody>
</table>

4. Conclusion
A rapid, simple, precise, accurate and specific HPLC method for C. halicacabum has been developed and validated. By using mobile phase Acetonitrile: Formic acid (70:30) was carried out. The data could be used as a quality control standard. The activity of a plant extract is always influenced by the quantity of active principle present in the extract. it is essential to develop a standardization method from which one can optimize its quantity in the herbal formulations.

5. Acknowledgement
- I am very thankful to S.K. University authorities for providing such an environment for doing better research very much.
- It’s my pleasure to express my thanks to Department of Chemistry for giving an opportunity to do research.
- I express my sincere thanks to my research Supervisor Prof. K. Sudhakar Babu, who is giving valuable guidance during my research.
- The author thanks to the Department of Biotechnology, Sri Krishnadevaraya University College of Engineering and Technology Anantapuramu, for providing facilities to carry out the work.

6. References