Hepatoprotective Activity of Methanolic Extract of Barleria Montana Nees Leaves in Paracetamol Induced Rat Hepatic Injury

Gunji Venkateswarlu*1, G. Swarupa Rani2, M. Vani3, Naga Prashant. K4

1*Assistant Prof, Department of Pharmacognosy, Narasaraopeta Institute of Pharmaceutical sciences, Narasaraopet, Guntur, Andhra Pradesh, India.
2Assistant Prof, Department of Pharmacology, Narasaraopeta Institute of Pharmaceutical sciences, Narasaraopet, Guntur, Andhra Pradesh, India.
3Asst. Professor, Department of Pharmacognosy, Vijaya Institute of Pharmaceutical Sciences for Women, Enikepadu, Vijayawada, Andhra Pradesh, India.
4Assistant Prof, Department of Pharmaceutical Chemistry, Narasaraopeta Institute of Pharmaceutical Sciences, Narasaraopet, Guntur, Andhra Pradesh, India.

ABSTRACT
The present study was undertaken to investigate the protective effect and possible mechanism of methanolic extract of Barleria Montana Nees (BM) on paracetamol induced rat. This respective activity was assessed through monitoring liver function tests through the measurement of triglycerides, cholesterol, total protein, total bilirubin, serum enzymes like SGOT and SGPT and in vivo antioxidant parameters like lipid peroxidase, Superoxide dismutase (SOD) and catalase. Further hepatic tissues were also subjected to histopathological studies. Pretreatment of BM methanolic extract (500mg/kg) reduced the fatty liver symptoms and significantly (p<0.001) inhibited the increase of respective serum enzyme levels. The results of the present study indicated that BM methanolic extract possess Hepato protective effects which could act as an effective treatment for acute hepatic diseases.

Keywords: Barleria Montana Nees, paracetamol, methanolic extract, hepatic diseases.

ARTICLE INFO

CONTENTS
1. Introduction .. 280
2. Materials and Methods ... 280
3. Results and Discussion .. 281
4. Conflict of interest statement. .. 283
5. Acknowledgement. ... 283
6. References ... 283

Article History: Received 29 July 2015, Accepted 24 September 2015, Available Online 15 December 2015

*Corresponding Author
Gunji Venkateswarlu
Assistant Prof,
Department of Pharmacognosy,
Narasaraopeta Institute of Pharmaceutical Sciences, Narasaraopet, Guntur, AP, India.
Manuscript ID: IJPNM2582

1. Introduction
Liver is the largest glandular organ of the body. It plays an astonishing array of vital functions in the maintenance and performance of the body. Some of these major functions include carbohydrate, protein, and fat metabolism, detoxification and secretion of bile juice. Today, with the extensive use of hepatotoxicants in daily routine life, it has become imperative to safeguard human populations inhabiting poverty against liver diseases because mammalian liver is a highly toxicity sensitive organ and responsible for drug metabolism. Alcohol abuse is one of the major health problems worldwide.

The Barleria Montana Nees, family Acanthaceae[1], is an erect, unarmed under shrubs. Leaves are obviate, ovate-lanceolate, and entire with purple colored flowers. Traditionally the leaves of this plant are being used as hepatoprotective, antioxidant, antidiabetic, treatment of wounds and cuts etc. The present study was undertaken to evaluate the hepatoprotective activity of this plant in experimental animal. The plant contains amongst many others alkaloids, flavonoids, phytosterols and phenolic compounds.

2. Materials and Methods
2.1. Drugs and Chemicals
Silymarin was obtained from Micro labs, Bangalore. All the biochemical estimations were conducted at Dayananda Sagar College of Pharmacy using the Semi autoanalyser and all the solvents used were of analytical grade.

2.2. Plant material and Extracts
The fresh leaves of Barleria Montana Nees (Acanthaceae), were collected from Periyapalaym, Thiruvallur District, Tamilnadu. It was then properly identified by the Botanist Prof.P.Jayaraman, Plant Anatomy Research Centre, Tambaram, Chennai. He confirmed and authenticated its identity. Authentication number is (PARC/2012/1253). A voucher specimen has been reserved in the Department of Pharmacognosy, Narasaraopeta Institute of Pharmaceuticals sciences, Narasaraopeta, Guntur Dist, Andhrapradesh.

2.3. Preparation of methanolic extract of leaves of Barleria Montana Nees
The leaves were air dried and coarsely powdered to 40 meshes and stored in air tight container till further use. Drug was defatted with petroleum ether and exhaustively extracted with methanol in soxhlet apparatus and the solvent was evaporated under reduced pressure and used for the activity.

2.4. Animals used
Wistar albino rats of either sex weighing between 150-200g were taken for the study. They were housed in polypropylene cages and maintained at (24±2) °C under 12 h light / dark cycle and they were feded libitum with standard pellet diet and had free access to water.³³ They were initially aclimatized for the study and protocol was approved by the Institutional animal ethics committee as per the requirements of the committee for the purpose of control and supervision on animals (CPCSEA), New Delhi.

2.5. Experiment
2.5.1. LD50 Determination
Acute oral toxicity was estimated by using albino rats (150-200 g each) of both sex, were maintained in the animal house of the Department of Pharmacology, under standard conditions (temperature 25± 2° C, relative humidity 75 ± 5% and 12-h light and dark cycle). The animals had access to standard laboratory feed & water ad libitum. All procedures involving animals were performed in accordance with the OECD guideline 425[2]. The animals were fasted for 3 hours prior to the experiment and were administered with single dose of extract dissolved in 2% w/v Tween 80 and observed for mortality upto 48h (short term toxicity). Based on short term toxicity, the dose of next animal was determined. All the animals were observed for long term toxicity (14 days) and LD50 was calculated. Experimental procedures were also examined and approved by internal ethical committee for animal welfare.

2.5.2. Hepatoprotective Activity
The hepatoprotective activity was carried out as described by Samuel Udem et al.[3] Albino rats of either sex were selected and divided into seven groups of six animals each. The animals were pretreated twice daily with vehicle (2% w/v Tween 80), BM leaf extract (250 and 500 mg/kg, silymarin (100mg/kg) orally, 1h before paracetamol administration. All the animals except normal control group received paracetamol (3.76gm/kg p.o.) twice daily for a period of 25 days. On the 26th day, the animals were anaesthetized using anesthetic ether and blood collected by retro orbital puncture.

The levels of SGOT, SGPT, total bilirubin, cholesterol, triglycerides, total proteins and albumin [5,6] were estimated as per standard procedures. Immediately after collection of blood, the animals were euthanized with an over dosage of ether, livers were removed and kept in cold conditions. It was cross chopped with surgical scalpel into fine slices in chilled 0.25M sucrose, quickly blotted on a filter paper. The tissue was minced and homogenized in 10mM Tris-HCl buffer, pH 7.4(10% w/v) with 25strokes of tight Teflon pestle of glass homogenizer at a speed of 2500 rpm.

The clear supernatant was used for oxidative stress markers assays like lipid per-oxidation [4], reduced glutathione [7], superoxide dismutase and catalase [8, 9]. Histopathology of liver was carried out by a modified method of Luna [10]. In brief, the autopsied livers were washed in normal saline and fixed in 10% formalin for 2 h followed by bovine solution for 6h. The livers were then paraffin embedded and 5µ thick microtome sections were made, processed with alcohol-xylene series and stained with haematoxylin[11,12]. It was
then studied under light microscope for any histological protection or damage.

2.5.3. Statistical analysis
The data obtained are expressed as mean ± SEM. The statistical differences between the means of various estimations were determined by One-way ANOVA. The values of P < 0.05 is been considered as significant.

3. Results and Discussion
Preliminary phytochemical studies indicated the presence of alkaloids, carbohydrates, phytosterols, phenolic compounds and flavanoids. BM was found to be non toxic upto a dose of 5000 mg/kg. Paracetamol administration resulted in significant elevation of serum enzymes like SGPT and SGOT, triglycerides, cholesterol, total bilirubin while total protein was found to be decreased compared to normal control group (Table.1, Figure.1). In vivo antioxidant parameters like catalase, lipid peroxidation and SOD were studied and it was found to be decreased compared to normal control group (Table.2, Figure.2).

Pretreatment with silymarin and BM leaf extract significantly prevented the biochemical changes induced by paracetamol (Fig No. 10). Hepatocytes of normal control group showed a normal lobular architecture of liver. In the paracetamol treated group the liver showed microvascular fatty changes, partially effaced architecture, some of the hepatocytes showed degenerative changes, epithelioid granulomas, aggregates of mononuclear inflammatory cells. Silymarin pretreated groups and BM leaf extract treated groups showed minimal fatty changes and their lobular architecture was normal, showing that BM leaf extract have significant hepatoprotective activity.

The drug entrapment efficiency from the hydrogel beads was obtained using UV spectrophotometer. The filtrate obtained after bead collection on the filter medium and diluting with phosphate buffer 7.4 was analyzed using a UV-Visible spectrophotometer and the absorbance value of the solution was noted from the UV spectrophotometer. This value was then compared using the calibration curve.

The calibration curve was first obtained by scanning the wavelength at maximum absorbance. This occurred at about 323 nm. The concentration of the drug was known at this wavelength. The drug entrapment efficiency was found to be in the range of 74.31% to 82.25%. The results indicate that the DEE of the micro beads prepared with lower concentration of polymer was lowest as compared to those prepared with higher concentration of polymer. Among all the formulations, F3 was found to have maximum entrapment efficiency compared to all other formulations.

Swelling Ratio:
The swelling rate was found to be different basing on the ratio of chitosan and polymer used. Due to polymer-polymer interactions and solvent-polymer interactions a mixed phase is observed where a hydrogel gains its maximum of hydrophilicity and swells. From the study it was observed that the rate of swelling more for F3 formulation.

Figure 1: Effects of extract on SGPT, SGOT, Triglycerides, cholesterol, Total protein, and Total bilirubin

Figure 2: Effects of extract on liver catalase, SOD & Lipid peroxidation.

Figure 3: Histo pathological graphs
a: Std Silymarin (100 mg/kg): Congestion of sinusoids, periportal mononuclear inflammatory infiltration; b: Alcohol toxicant. Partially effaced architecture, some of the hepatocytes show degenerative changes, epithelioid granulomas, aggregates of mononuclear inflammatory cells. Some of the sinusoids show congestion. Most of the hepatocytes show degenerative changes. There are seen epithelioid granulomas and aggregates of mononuclear inflammatory infiltration within the parenchyma; c: Normal saline:Section studied shows liver parenchyma with intact architecture. Most of the perivenular (zone-3) hepatocytes, periportal (zone-1) hepatocytes and midzonal (zone-2) hepatocytes appear normal. Within the hepatic parenchyma are seen few scattered mononuclear inflammatory cells; d: Barleria Montana Nees (250 mg/kg): Intact architecture, apoptotic and regenerative hepatocytes, sinusoidal congestion, aggregates of histiocytes are seen. Some of the sinusoids show congestion. Also seen are scattered apoptotic and regenerative hepatocytes. Intervening the
hepatocytes are seen aggregates of histiocytes and mononuclear inflammatory cells; e: Barleria Montana Nees (500mg/kg): Intact architecture, few regenerative hepatocytes, sinusoidal congestion. Most of the sinusoids and central veins appear dilated and congestion. Also seen are scattered regenerative hepatocytes (Long arrow). Intervening the hepatocytes are seen scanty scattered mononuclear inflammatory infiltration.

Discussion

Liver is the major organ of our body. It can be injured by many chemicals and drugs. Here in the present study paracetamol was used as a toxicant to induce liver damage, since it is clinically very relevant. Paracetamol produces a constellation of dose related deleterious effects in liver. In chronic alcoholics, hepatomegaly occurs due to accumulation of lipids and proteins in hepatocytes with an impaired protein secretion by hepatocytes. During hepatic damage, cellular enzymes like Serum transaminases present in the liver cells leak into the serum resulting in increased concentrations. Paracetamol administration for 25 days increased all these serum enzymes whereas administration of methanolic extract of Barleria Montana Nees showed significantly reduced Serum transaminase enzyme levels and increased total protein albumin levels, indicating their hepatoprotective effect against alcohol-induced liver cell damage. The benefits of Barleria Montana Nees methanolic extract have been further confirmed by histopathological observations. It was well established that overdoses of paracetamol lead to partially effaced architecture, most of the hepatocytes showed degenerative changes, epitheliali granulomas, aggregates of mononuclear inflammatory cells. shrinkage of centrilobular reticular fibers, macrovesicular steatosis with ballooning of hepatic cells (fatty liver). Fatty change is characterized by the accumulation of triglyceride in hepatocytes. The three main mechanisms which may play a role in the development of alcoholic fatty liver are, increased substrate supply for fatty acid esterification, direct stimulation of the esterification pathway and decreased export from the liver of triglyceride as Very-Low-Density Lipoproteins (VLDL)\(^{[13-19]}\). These effects have been significantly reduced with the pretreatment of BM methanolic extract. The macrovesicular inflammation evoked by paracetamol considerably decreased following extract pretreatment. Thus the accelerated recovery of hepatic cells by the Barleria Montana Nees methanolic extract was evidenced by histopathological observation, which suggests protection against membrane fragility, thus decreases the leakage of the marker enzymes into the circulation. The results suggest that the flavonoid compounds in Barleria Montana Nees methanolic extract play a pivotal role in the therapeutics of hepatotoxicity by increasing the body’s natural antioxidant defenses with depletion in the paracetamol induced oxidative stress and reduction in the elevated levels of liver enzymes. The present investigation has opened avenues for further research in the development of potent phytotherapy for hepatoprotection from Barleria Montana Nees methanolic extract.

Table 1: Effects of extract on SGPT, SGOT, Triglycerides, cholesterol, Total protein and Total bilirubin.

<table>
<thead>
<tr>
<th>Group</th>
<th>SGPT (IU/mL)</th>
<th>SGOT (IU/mL)</th>
<th>Triglycerides (mg/dL)</th>
<th>Cholesterol (mg/dL)</th>
<th>Total bilirubin (mg/dL)</th>
<th>Total protein (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>30.29 ± 0.5297</td>
<td>34.87 ± 0.6114</td>
<td>86.31 ± 2.292</td>
<td>143.87 ± 2.876</td>
<td>0.242 ± 0.0158</td>
<td>5.74 ± 0.4010</td>
</tr>
<tr>
<td>Paracetamol Treated</td>
<td>122.195 ± 1.628</td>
<td>176.34 ± 1.378</td>
<td>196.49 ± 5.204</td>
<td>310.92 ± 7.407</td>
<td>1.492 ± 0.1754</td>
<td>3.75 ± 0.2105</td>
</tr>
<tr>
<td>Silymarin + Paracetamol</td>
<td>52.292 ± 1.237</td>
<td>86.631 ± 0.9711</td>
<td>153.52 ± 1.869</td>
<td>181.43 ± 4.009</td>
<td>0.472 ± 0.0348</td>
<td>5.28 ± 0.4374</td>
</tr>
<tr>
<td>Barleria Montana Nees leaf extract (250mg)</td>
<td>91.785 ± 0.8743</td>
<td>132.14 ± 1.509</td>
<td>172.62 ± 1.790</td>
<td>238.24 ± 6.040</td>
<td>0.671 ± 0.04513</td>
<td>3.523 ± 0.3938</td>
</tr>
<tr>
<td>Barleria Montana Nees leaf extract (500mg)</td>
<td>76.932 ± 0.7407</td>
<td>112.738 ± 0.7939</td>
<td>134.96 ± 2.104</td>
<td>194.42 ± 3.672</td>
<td>0.418 ± 0.02485</td>
<td>5.534 ± 0.2560</td>
</tr>
</tbody>
</table>

Values are expressed as mean±S.E.M (n = 6) ap <0.001 compared to paracetamol intoxicated group, bp <0.01 compared to paracetamol intoxicated group and cp<0.05 and ns>0.05 using 1 way ANOVA followed by Tukey Kramer Multiple comparison test.

Table 2: Effects of extract on liver Catalase, SOD & Lipid peroxidation

<table>
<thead>
<tr>
<th>Group</th>
<th>Catalase</th>
<th>SOD</th>
<th>Lipid Peroxidation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>88.33±2.132</td>
<td>13.10±0.4342</td>
<td>5.83±0.3673</td>
</tr>
<tr>
<td>Paracetamol Treated</td>
<td>31.18±1.231</td>
<td>4.17±0.1751</td>
<td>8.16±0.3364</td>
</tr>
<tr>
<td>Silymarin</td>
<td>75.85±2.142</td>
<td>8.78±0.2611</td>
<td>6.11±0.2458</td>
</tr>
<tr>
<td>Methanolic extract of Barleria Montana Nees (250mg/kg)</td>
<td>41.095±2.411</td>
<td>6.15±0.3342</td>
<td>7.44±0.3179</td>
</tr>
<tr>
<td>Methanolic extract of Barleria Montana Nees (500mg/kg)</td>
<td>60.825±2.188</td>
<td>7.91±0.2423</td>
<td>5.06±0.2051</td>
</tr>
</tbody>
</table>

Values are expressed as mean±S.E.M (n = 6) a P<0.001 compared to paracetamol intoxicated group, b P<0.01 compared to Paracetamol intoxicated group and c P<0.05 and ns>0.05 using 1 way ANOVA followed by Tukey Kramer Multiple comparison test.
4. Conflict of interest statement
We declare that we have no conflict of interest.

5. Acknowledgements
I would like to sincerely thank Mr. J N Suresh Kumar M.Pharm., Ph.D., Principal Narasaraopeta Institute of Pharmaceutical sciences, Narasaraopeta. Dr. M. Rajkumar, M.Pharm., Ph.D., Head, Department of Pharmacognosy, Padamavathi college of Pharmacy and Research Institute, Dhamapuri, Tamilnadu and who guided me Dr. V. Maithili, M.Pharm., Ph.D., providing facilities and opportunity to accomplish this Endeavour successfully. Would like to thank my wife G. Ankalakshmi who supported me to carry this work.

6. References
2. OECD 2001-guideline on acute oral toxicity (AOT), Environmental Health and Safety monograph series on testing and adjustment. No. 425.