Antibacterial and antifungal activity of *coccinia grandis* instant juice powder

Elicy Priya*1 M and Thilagavathi S2

1M Phil. Scholar and 2Assistant Professor, Department of Food Science and Nutrition, Periyar University, Salem, India

**A B S T R A C T**

*Coccinia grandis* L., (Ivy gourd) of the family *Cucurbitaceae* is distributed in tropical Asia, Africa and is commonly found in India, Pakistan and Sri Lanka. The *Cucurbitaceae* family is commonly known as gourd, melon, and pumpkin family. *Coccinia grandis* plays a major role in the medicinal properties. The main aim of this work is to study the antibacterial, antifungal activity of *coccinia grandis* instant juice powder. *Coccinia grandis* fruits were processed to obtain pulp and made into juice powder. The flavonoid, tannin, phytosterol, glycosides were exist in both aqueous and ethanol extracts of *coccinia grandis* instant juice powder. The antibacterial and antifungal studies revealed a significant activity against bacterial and fungal strains. It showed 2 to 5.1 mm zone of inhibition in the aqueous and solvent extract. Compared with solvent extracts, aqueous extract has more potential. This may be attributed to the presence of phytochemical in *coccinia grandis* instant juice powder. It is concluded from the current study that the phytochemicals of *coccinia grandis* remained active even after thermal processing. Hence *coccinia grandis* instant juice powder could be a good source of phytochemical with potential antibacterial and antifungal property.

**Keywords:** *Coccinia grandis* L., *Cucurbitaceae*, flavonoid, tannin, phytosterol, glycosides

**A R T I C L E  I N F O**

**CONTENTS**

1. Introduction ................................................................. 214
2. Materials and Methods .................................................. 214
3. Results and Discussion .................................................. 215
4. Conclusion ....................................................................... 217
5. References ....................................................................... 217

**Article History:** Received 19 December 2014, Accepted 27 January 2015, Available Online 15 June 2015

**Citation:** Elicy Priya M and Thilagavathi S. Antibacterial and antifungal activity of *coccinia grandis* instant juice powder. *Int. J. Pharm. Natural Med.*, 2015, 3(1): 213-217.

**Copyright© 2015** Elicy Priya M and Thilagavathi S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
1. Introduction

Ivy Gourd (Coccinia indica) is extensively used as vegetable and grown wildly throughout Indian subcontinent. It is commonly known as ‘Kundru’ in India. kovakai in Tamilnadu. Ivy plant has been used in traditional medicine a household remedy for various diseases, including biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders. For the last few decades, some extensive work has been done to establish the biological activities and pharmacological actions of Ivy Gourd and its extracts. Polypreenol is the main yellow bioactive component of Ivy Gourd has been shown to have an antidiisplidemic of biological actions. Anti-inflammatory, antioxidant, antimutagenic, anti diabetic, antibacterial, antiprototozoal, antilucer, hepatoprotective, expactorants, analgesis, anti inflammatory are the reported pharmacological activities of Ivy Gourd (Goldy yadav et al, 2014). Its leaves and fruits also have antiOxidant property (Ashish K et al, 2011).

Aqueous extract of the leaves shows significant anti malarial activity (Amalesh et al., 2011). Root extracts of Coccinia grandis possesses anti-oxidant activity (Preeti Bhadauria et al., 2012). The leaves of this plant show antiprototozoal, antioxidant effect (Papiya Mitra et al., 2008). The leaf and stem extracts exhibit anti-bacterial activity (Umbreen Farrukh et al., 2008). The object of the present study is to examine antifungal activities and antibacterial activities against some fungi and bacterial strains.

2. Materials and Methods

Collection of raw materials

The fully mature fruits of coccinia grandis were collected from market in erode district. The fruits were washed and blanched thoroughly.

Preparation of instant juice powder:

The properly selected and prepared fruits were then passed through juice extractor and the pulp was collected. To the pulp was added preservative (citric acid) and stored. The pulp thus obtained had a brix of 40 degree was concentrated under controlled condition in plastic bags. (Saeed et al., 2010)

Extraction Preparation

Aqueous Extract

To obtain the aqueous extracts, about 10 grams of the Coccinia grandis instant juice powder were homogenized using 100 ml of water. They were added to soxhlet apparatus and the boiling point of water was set up at 100°C. The water evaporates continuously and was recycled, thereby extracting the compounds present in the samples. They were continuously extracted until the solution loses the color. Acetone Extract

Ten grams of the Coccinia grandis instant juice powder were homogenized using 100 ml of acetone. They were added to soxhlet apparatus and the boiling point of acetone was set up at 55°C. The solvent was recycled, thereby extracting the compounds present in the samples. They were continuously extracted until the solution loses the color. The extract was then transferred to a sterile petri dish and kept for evaporation of acetone at room temperature. Residues of extracts were collected and stored in refrigerator.

Ethanol Extract

Ten gram of the Coccinia grandis instant juice powder was homogenized using 100 ml of 70% ethanol. They were added to soxhlet apparatus and boiling point of the ethanol was set up at 78°C. The solvent was recycled, thereby extracting the compounds present in the samples. They were continuously extracted until the solution loses the colour. The extract was then transferred to a sterile petri dish and kept for evaporation of ethanol at room temperature. Residues of extracts were collected and stored in refrigerator.

Chloroform Extract

Ten gram of the Coccinia grandis instant juice powder was homogenized using 100 ml of 70% ethanol. They were added to soxhlet apparatus and boiling point of the ethanol was set up at 78°C. The solvent was recycled, thereby extracting the compounds present in the samples. They were continuously extracted until the solution loses the colour. The extract was then transferred to a sterile petri dish and kept for evaporation of chloroform at room temperature. Residues of extracts were collected and stored in refrigerator (Poovendran et al, 2011).

Phytochemical Screening

Phytochemical screening was done by following method.

Tests for Alkaloids

A small portion of the extract was stirred with a few drops of dilute hydrochloric acid and filtered. The filtrate may be tested carefully with various alkaloid reagents such as:

- Mayer’s reagent - Cream precipitate
- Dragendorff’s reagent - Orange brown precipitate
- Hager’s reagent - Yellow precipitate
- Wagner’s reagent - Reddish brown precipitate.

Tests for carbohydrates & glycosides

The minimum amount of extracts were dissolved in 5 ml of distilled water and filtered. The filtrate was subjected to test for glycosides.

Molisch’s test:

The filtrate was treated with 2-3 drops of 1% alcoholic alpha naphthol, and 2 ml of concentrated sulphuric acid was added along the sides of the test tube. Violet colour was obtained.

Fehling’s test:

The filtrate was treated with 1 ml of Fehling’s solution and heated. A reddish orange precipitate was obtained.

Tests for glycosides
Another portion of the extract was hydrolyzed with hydrochloric acid for a few hours on a water bath and the hydrolysate was subjected to Legal’s, Borntrager’s test to detect the presence of different glycosides.

Borntrager’s test:
Hydrolysate was treated with chloroform and the chloroform layer was separated. To this equal quantity of dilute ammonia solution was added. No colour change in Ammonical layer was observed.

Test for phytosterol
1 g of the extract was dissolved in few drops of dilute acetic acid, 3 ml of acetic anhydride was added followed by few drops of conc. sulphuric acid. Appearance of bluish green colour shows the presence of phytosterol.

Test for fixed oils and fats
Small quantity of the various extracts was separately pressed between two filter papers. Oil stain on the paper indicates the presence of fixed oil.

Test for saponins
The extract was diluted with 20ml of distilled water and it was agitated on a graduated cylinder for 15 min. The presence of saponins was indicated by formation of 1cm layer of foam.

Test for tannins and phenolic compounds
Small quantities of various extracts were taken separately in water and tested for the presence of phenolic compounds and tannins with
- Dilute ferric chloride solution (5%) - violet colour
- 1% solution of gelatin containing 10% NaCl - white precipitate
- 10% Lead acetate solution - white precipitate.

Test for proteins
Dissolved small quantities of various extracts in a few ml of water and treated with
- Million’s reagent - Red colour
- Ninhydrin reagent - Purple colour
- Biuret Test - Equal volume of 5% solution and 1% copper sulphate solution were added. Pink or Purple colour.

Test for flavonoids- Shioda’s test
To the extract, Magnesium turnings and dew drops of concentrated hydrochloric acid were added and boiled for 5 minutes. Red colour was obtained.

Test for lignin
With alcoholic solution of phloroglucinol and hydrochloric acid - Red colour was observed.

Detection of volatile oils
About 50 g of powered material was taken in a distillation apparatus and subjected to hydrodistillation for the detection of volatile oil (Elamathi and Muhamad, 2012)

Bioactivity of Coccinia grandis instant juice powder
The petri dishes were cleaned, dried and sterilized. Then they were filled with a Nutrient Agar medium with uniform thickness. After solidifying, the plates were inoculated with the above mentioned organisms of bacteria and fungi. Three holes were made in the inoculated plates by means of 5 cm and 3-5 mm internal diameter. In each hole, Ciprofloxin and Trioderm standard drugs and extracts of each samples were added under aseptic conditions. The plant extracts and the standard were dissolved in dimethyl sulphoxide (DMSO) and the 0.1 ml of was introduced into the cylindrical hole by means of micropipette which has 100 mcg/ml concentrated of respective extracts and 10 mcg /ml concentrated of standards were added to the holes. Then the plates were kept in the refrigerator for two hours for diffusion. All the petri dishes were incubated at 37°C for 24 hours for bacteria and 25°C for 48 hours for fungal strains. The zone of inhibition was measured by using scales. (Reddy et al 2009).

3. Results and Discussion
Physico Chemical Analysis
The Coccinia grandis instant juice powder and analysed for its physicochemical characters, which were presented in table-1. Acid insoluble ash comprised of 0.89±0.26, Sulphated ash content was 2.13±1.09. The total ash and water soluble ash value were 1.45±0.986 and 1.22±0.36 respectively. Further results showed that moisture content and foaming index were found to be 1.66±0.99 and 1.5±0.59 respectively.

Table 1: Physico chemical analysis in coccinia grandis instant juice powder

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parameters determined</th>
<th>Values (Mean ± Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Ash (g)</td>
<td>1.45±0.986</td>
</tr>
<tr>
<td>2</td>
<td>Acid Insoluble Ash (g)</td>
<td>0.89±0.26</td>
</tr>
<tr>
<td>3</td>
<td>Water solube ash (g)</td>
<td>1.22±0.36</td>
</tr>
<tr>
<td>4</td>
<td>Sulphated Ash (g)</td>
<td>2.13±1.09</td>
</tr>
<tr>
<td>5</td>
<td>Loss on drying (g)</td>
<td>1.66±0.99</td>
</tr>
<tr>
<td>6</td>
<td>Foaming Index (cm)</td>
<td>1.5±0.59</td>
</tr>
</tbody>
</table>

The phytochemical characteristics were summarized in Table-II. The results revealed the presence of medically active compounds in aqueous extracts, ethanol extracts and acetone extracts of coccinia grandis instant juice powder. The presence of flavonoids observed in aqueous, ethanol and acetone extracts.

Flavonoids are hydroxylated phenolic substance known to be synthesized by plants in response to microbial infection and they have been found to be antimicrobial substances against wide array of microorganisms in vitro. Their activity is probably due to their ability to complex with extracellular and soluble proteins and to complex with bacterial cell wall (Marjorie et al 1996). Flavonoid is effective antioxidant and show strong anticancer activity (Salah et al, 1995).

Saponin present only in aqueous extracts of coccinia grandis instant juice powder. The aqueous fruit extract revealed to contain saponin which are known to produce inhibitory effect on inflammation (Just et al, 1998). Alkoloids present in ethanol extracts of coccinia grandis instant juice powder. Alkoloids have been associated with medicinal uses for centuries and one of their common biology properties is their cytotoxicity (Nobori et al, 1994). Glycosides exist in all the extracts of coccinia grandis.

The antibacterial and antifungal activity of fresh pulp of Coccinia grandis and coccinia grandis instant juice powder were examined by preparing aqueous and ethanol extracts in the present study. The results are given in Table-III. The zone of inhibition produced by coccinia grandis instant juice powder and fresh paste, were compared with standard drugs such as cephalaxin and Trioderm for antibacterial and antifungal activity respectively. It is evident from the table that there is significant activity against bacterial and fungal strains by the aqueous extract and ethanol extraction. The zone of inhibition of standard antibacterial (Cephalaxin) drugs were ranged from 5-10 mm against the bacterial strains such as E.coli, Staphylococcus and Klebsiella  Pneumonia where as its ranged from 2 to 6.1mm in case of aqueous extract and 2.5 to 5 mm in case of ethanol extract, when compared to solvent extraction, aqueous extract of coccinia grandis instant juice powder were more potential against the bacterial strains. The zone of inhibition of standard antifungal (Trioderm) drugs were ranged from 15 to 30 mm against the fungal strains such as Alternaria and Aspergillus niger whereas it range from 3 to 5 mm in case of aqueous extract and 1.5 to 5 mm in case of ethanol extract, when compared to solvent extraction, aqueous extract of coccinia grandis instant juice powder were more potential against the fungal strains.

Bhattacharya (2010) evaluated the antifungal activity of the Coccinia grandis extract against the Candida albicans-II, Candida tropicalis, Aspergillus Niger, Saccharomyces cerevisiae, Candida tropicalis II, Cryptococcus neoformans and Candida albicans ATCC. Ethanol extract is more significant in producing antifungal activities. Nonpolar fractions in the extract possess a higher level of antifungal properties. Aqueous extract is more sensitive for both strains of Candida albicans and Ethanolic extract is more sensitive for Aspergillus Niger and both strains of Candida albicans.

Table 2: Phytochemical analysis in Coccinia grandis instant juice powder

<table>
<thead>
<tr>
<th>S.No</th>
<th>Phytoconstituents</th>
<th>Aqueous Extracts</th>
<th>Ethanol Extracts</th>
<th>Acetone Extracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Lignin</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Tanin</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Saponin</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Protein</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Phytosterol</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Fixed oils and Fats</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Glycosides</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Volatile oils</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

(+) indicates presence; (-) indicates absence

Table 3: Anti bacterial and antifungal activity of coccinia grandis instant juice powder

<table>
<thead>
<tr>
<th>S.No</th>
<th>Micro organism</th>
<th>Standard Drug(mm)</th>
<th>Ethanol extract(mm)</th>
<th>Aqueous extract(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacterial</td>
<td>IJP</td>
<td>FP</td>
<td>IJP</td>
</tr>
<tr>
<td>1.</td>
<td>E. coli</td>
<td>10.0</td>
<td>10.0</td>
<td>4.5</td>
</tr>
<tr>
<td>2.</td>
<td>Staphylococcus</td>
<td>10.0</td>
<td>10.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>Klebsiella</td>
<td>10.0</td>
<td>5.0</td>
<td>2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No</th>
<th>Fungal strains</th>
<th>Standard Drug</th>
<th>Ethanol extraction</th>
<th>Aqueous Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Alterneria</td>
<td>15</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.</td>
<td>Aspergillus</td>
<td>20.0</td>
<td>1.5</td>
<td>0</td>
</tr>
</tbody>
</table>

IJP- Instant Juice powder, FP- Fresh Puree
4. Conclusion
As far as the physicochemical property is concerned, *Coccinia grandis* istant juice powder contains high total ash content which is attributed to high mineral value. The phytochemical screening is an evident of antibacterial and antioxidant property of *Coccinia grandis* istant juice powder. It is concluded from the current study that the phytochemicals of *Coccinia grandis* remained active even after thermal processing. Hence *Coccinia grandis* istant juice powder could be a good source of phytochemical with potential antibacterial and antifungal property.

5. References