Anti-Inflammatory Activity of Smilax wightii fruit, Endemic A.DC. (Smilacaceae) - An Endangered Medicinal Plant from the Nilgiris

V. Asha Devi1*, K.A. Arumugasamy1, A. Shalimol1, R. Nantha Kumar1, M.R. Udhayasankar1 and R. Kokilavani2

1PG and Research Department of Botany, Kongunadu Arts and Science College (Autonomous), Coimbatore, India-641029
2PG and Research Department of Biochemistry, Kongunadu Arts and Science College (Autonomous), Coimbatore, India-641029

Contents
1. Introduction .. 136
2. Experimental .. 137
3. Results and discussion .. 137
4. References .. 138

*Corresponding author
V. Asha Devi
PG & Research Department of Botany, Kongunadu Arts & Science College, Coimbatore, India-641029
Manuscript ID: NCBC2014-JPBR2266

Abstract
Smilax wightii A.DC. is an endangered medicinal plant available in the Nilgiri Biosphere Reserve and it is said to be used in curing several diseases like dysentery, amoebiasis, venereal diseases, urinary complaints, fever, spermatorrhoea, antifertility, anaemia, rheumatic-arthritis, veterinary amoebiasis and gastric complaints which are found in the Indian and Chinese system of medicine. In the present study, the ethanol extract of S. wightii exhibited the significant anti-inflammatory activity at the dose of 100 mg/kg and 200 mg/kg, body weight. The percent inhibition of paw oedema of s. wightii is 59.77 and 77.58 at various doses. The result confirmed that S.wightii has potent anti-inflammatory activity.

Keywords: Smilax wightii, ethanolic extract, anti-inflammatory activity.

1. Introduction
Inflammatory diseases and rheumatic diseases are major causes of morbidity of a working force throughout the world. It is said to be called ‘King of human Miseries’. In any type of injuries on human body could be elicited as serious of chemical changes in that area is called inflammation. The steroidal and even non-steroidal anti-inflammatory drugs some time evoked several side effects. Therefore it is necessary to search for new anti-inflammatory drugs from the natural botanical resources with minimal drawbacks. Nowadays there is a growing interest in the scientific evaluation of plants found in the Indian traditional systems of medicine, like Ayurveda,
siddha and Unani. The genus *Smilax* consist of ca. 300 species, belongs to the families Smilacaceae (Fnaec,2000) and distributed in temperature, tropic and subtropical zones. The roots of *Smilax wightii* have been reported to cure dysentery, amoebiasis, veneral diseases, urinary complaints, fever, spenorrhea, anaemia, rheumatic arthritis, veterinary amoebiasis and gastric complaints (Adhikari et al., 2010). The genus of *Smilax* has reported to contain several phytoconstituents such as dioscin, steroids smilagenin and sarsapogenin Coimbatore BSI, 1989. Several species of *Smilax* are used in Chinese traditional system of medicines as anticancer, anti-inflammatory and analgesic agents (Ozoy et al., 2008). Therefore, the present study was undertaken to evaluate the anti-inflammatory activity using fruits of *Smilax wightii*, a rare endemic medicinal plant of Smilacaceae.

2. Materials and Methods

Fresh fruits of *S.wightii* was collected from kodanadu, the Nilgiri Hills, Western Ghats Tamilnadu and authenticated by a plant taxonomist, M.Murugesan, Scientist, SACON and Coimbatore.

Extraction

Air dried and coarsely powdered *S.wightii* fruits are extracted initially with petroleum ether followed by ethanol. The extract was then concentrated to dryness under reduced pressure and controlled temperature. Final traces of methanol were removed and they were preserved in a refrigerator till further use (Khandelwal, 2002).

Experimental

Male swiss albino rats weighing about 20-25g were procured from Kerala agricultural University, Animal house, Trissur. All the animals were kept in standard polypropylene cages and maintained under standard conditions: temperature (24±1°C), relative humidity (45-55%) and 12:12 light: dark cycle. All these rats were acclimatized to laboratory conditions 48 hrs before the experimental period. Each groups has 5 rats which are used in all sets of experiments. The rats were provided with standard rodent pellet diet and the food was withdrawn 18-24 hrs before the experiment and only water was allowed ad libitum. All the experiments were performed according to ethical guidelines for the investigation of experimental pain in conscious animals (659/02/a/CPCSEA).

In vivo Anti-Inflammatory Activity

Carrageenan-induced paw oedema in albino rats

In this experiment, all the rats were divided into 5 groups each consisting of five rats in each group. In all groups acute inflammation was produced by sub plantar injection of 0.1ml freshly prepared 1% suspension of carrageenan in normal saline in the right hind paw of the mice and paw volume was measured plethysmometrically at 0 to 180mins after carrageenan injection. All the rats were premedicated with indomethacin (10mg/kg b.wt.) orally two hour before infection. Mean increase in paw volume was measured and percentage was calculated for all the extracts. The extracts were subjected for acute toxicity studies and 1/10th of the LD50 dose was selected for pharmacological activity (Winter and Poster, 1957). Percentage inhibition of paw volume was calculated by the following formula.

\[
\% \text{Inhibition} = \left(\frac{V_c - V_t}{V_c} \right) \times 100
\]

Where

- \(V_t\) - means increase in paw volume in mice treated with test compounds.
- \(V_c\) - means increase in paw volume in control group of rats.

3. Results and Discussion

The present study demonstrated the potent anti-inflammatory activity of the ethanolic extract of *smilax wightii* fruits ethanol extract in carrageenan induced rat paw edema model. The mean increase in paw edema volume was about 139.63±1 in control rats for 180 mins. *smilax wightii* fruits ethanol extract at the dose of 100 mg/kg and 200 mg/kg, body weight significantly (p < 0.01) reduced the mean paw edema volume after 3 hrs carrageenan injection. *smilax wightii* fruits ethanol extract treated groups have exhibited improved anti-inflammatory activity with the per cent inhibition of paw edema of 59.77 and 77.58 resp. as compared with the control group. However, the standard drug, Indomethacin has also exhibited (10 mg/kg b.wt.) significant (p < 0.01) anti-inflammatory activity and per cent inhibition was 82.01 as shown in table 1. In *vivo* anti-inflammatory activity (Carrageenan-induced oedema test), is highly sensitive to non-steroidal anti-inflammatory drugs, and has long accepted as a useful phlogistic tool for investigation of new anti-inflammatory drugs (Just et al 1998). The extract has inhibited the release of pro-inflammatory mediators of acute inflammation such as histamine and prostaglandin. Interestingly, the extracts caused gastrointestinal irritation in rats typical of anti-inflammatory inhibitors such as the non-steroidal anti-inflammatory drugs NSAIDs (Rang and Dale 1988). Thus, these extracts may exert anti-inflammatory effect. The similar results were also reported in cardiopermum helicacabum (Venkadesh Babu and Krishakumari, 2006).
The anti-inflammatory activity of aerial parts and tuber part of methanolic extracts of *S.wightii* were evaluated by carrageenan induced mice paw oedema method. (Udegbunam *et al.*, 2012).

From this study it may be concluded that the fruits of *S.wightii* were found to exhibit anti-inflammatory activity, this activity is due to the presence of some flavonoids, alkaloids, terpenoids and phenols in the fruits. Hence it could be used as an alternative drug from the plant origin for the treatment of anti-inflammatory related diseases.

Table 1: *In vivo* anti-inflammatory activity of ethanolic extract of *Smilax wightii* fruit on Carrageenan induced hind paw oedema in rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Oedema volume (ml)</th>
<th>% Inhibition after 180 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose mg/kg</td>
<td>0 min</td>
<td>60 min</td>
</tr>
<tr>
<td>Group I: Normal saline</td>
<td>24.13±1.83</td>
<td>59.54±1.32</td>
</tr>
<tr>
<td>Group II: 100µg/kg</td>
<td>25.85±1.96</td>
<td>98.49±1.88</td>
</tr>
<tr>
<td>Group III: 200µg/kg</td>
<td>28.48±1.64</td>
<td>87.21±1.27**</td>
</tr>
<tr>
<td>Group IV: 400µg/kg</td>
<td>26.78±1.93</td>
<td>51.84±1.07***</td>
</tr>
<tr>
<td>Group V: 10mg/kg</td>
<td>29.13±1.62</td>
<td>36.13±1.05***</td>
</tr>
</tbody>
</table>

Each Value is SEM ± 5 individual observations *P < 0.05, ** P<0.01, *** P<0.001 Compared paw oedema induced control vs drug treated rats

Group I: Control rats given normal saline orally by using an Intra Gastric Catheter tube (IGC).

Group II: Rats given Ethanol EW extract at the dose of 100 mg/ Kg b.wt. by IGC.

Group III: Rats given Ethanol EW extract at the dose of 200 mg/ Kg b.wt. by IGC.

Group IV: Rats given Ethanol EW extract at the dose of 400 mg/ Kg b.wt. by IGC.

Group V: Rats given Indomethacin at the dose of 10 mg/ Kg b.wt. by IGC.

4. References